

Quick Start Guide

for Java
Version 3.4

Copyright © 2011 Twin Oaks Computing, Inc.

Castle Rock, CO

80108

All Rights Reserved

2

2
CoreDX DDS Quick Start Guide for Java
Version 3.4 Nov 2011

Welcome
Welcome to CoreDX DDS, a high-performance implementation of the OMG Data Distribution Service

(DDS) standard. The CoreDX DDS Publish-Subscribe messaging infrastructure provides high-throughput,

low-latency data communications.

This Quick Start will guide you through the basic installation of CoreDX DDS, including installation and

compiling and running an example Java application. You will learn how easy it is to integrate CoreDX

DDS into an application. This Quick Start Guide is tailored for Java applications, and the examples differ

slightly for other languages.

Installation
First things first: get CoreDX DDS onto your development system! Here’s what you need to do:

1. Once you have obtained CoreDX DDS from Twin Oaks Computing (or from the Eval CD), unpack
the appropriate distribution for your machine somewhere on your system. We’ll refer to this
directory throughout this guide as COREDX_HOME. For example, on a UNIX system this
command will extract the distribution into the current directory:

gunzip –c coredx-3.0-Linux_2.6_i686-Release.tar.gz | tar xvf –

CoreDX DDS is available for multiple platform architectures, and multiple platform

architectures of CoreDX DDS can be installed in the same top level (COREDX_TOP)

directory. The directory structure under COREDX_TOP will look like:

2. If you are using an evaluation copy of CoreDX DDS, follow the instructions you received when
you downloaded the software to obtain an evaluation license. Otherwise, use the purchased
license provided by Twin Oaks Computing. Once you have the license, put this file somewhere
on your system. We’ll refer to the full path name to this file throughout this guide as
LICENSE_FILE.

3

3
CoreDX DDS Quick Start Guide for Java
Version 3.4 Nov 2011

Building an Application
Next, integrate CoreDX DDS into an application! We’ve provided a sample data type and application

with the distribution (located in COREDX_TOP/examples). You can use these examples or create your

own while going though the following steps.

1. Create the Data Definition Language (DDL) file for the data type(s) you will use for
communications. The CoreDX DDS DDL syntax is very similar to the OMG IDL syntax for
describing data types. Here is the “hello world” example provided with the distribution:

hello.ddl

struct StringMsg

{

 string msg;

};

2. Tell the CoreDX DDS DDL compiler where your evaluation license is located. You can copy the
license file into the directory where you will run the compiler; or set the following environment
variable, using the full path to your license file. (This assumes a bash style shell):

% export TWINOAKS_LICENSE_FILE=LICENSE_FILE

3. Compile the DDL to generate the type specific code using the CoreDX DDS DDL compiler. The
DDL compiler is a host tool, and is located in the host subdirectory. Actually, there may be more
than one DDL compiler, if you have multiple platform versions of CoreDX DDS installed. In this
case, choose the appropriate compiler for your architecture. Assuming we are using a Linux
distribution and the name of the DDL file is hello.ddl (we use the one in the hello_c example
directory):

% COREDX_TOP/host/bin/Linux_26_x86_gcc43_coredx_ddl –f

../hello_c/hello.ddl –l java

The compilation will generate the following files (file names are based on the DDL type name):

 StringMsg.java

 StringMsgTypeSupport.java

 StringMsgDataReader.java

 StringMsgDataWriter.java

4. Create code to publish data of this data type. Our sample Hello World publisher is located in
COREDX_HOME/examples/hello_java/HelloPub.java.

5. Create code to subscribe to data of this data type. Our sample Hello World subscriber is located
in COREDX_HOME/examples/hello_java/HelloSub.java.

6. Compile your application(s). Our Hello World example creates two applications, one for the
publisher and one for the subscriber. This is not necessary, and is completely dependent on
your application architecture. Your application will require the objects from the generated type
support code above, as well as your publisher and/or subscriber code.

4

4
CoreDX DDS Quick Start Guide for Java
Version 3.4 Nov 2011

CoreDX DDS will require the following paths and libraries when compiling your application:

Class Path: -cp classes –cp \

${COREDX_TOP}/target/java/coredx_dds.jar

We’ve provided a compile.sh (UNIX) and compile.bat (Windows) for compiling our example. You

can use these as a reference for compiling your application. Our scripts require three

environment variables:

1. COREDX_TOP
2. COREDX_HOST
3. COREDX_TARGET

The COREDX_TOP is a path name to the location of your CoreDX DDS distribution(s).

COREDX_HOST and COREDX_TARGET are the platform architectures you are compiling on and

compiling for (these can be the same). These values can be set manually, or determined by

running the script: COREDX_TOP/scripts/cdxenv.sh or cdxenv.bat.

Our scripts will run the DDL compiler to generate the type specific code as well as compile the

applications. To compile the Hello World sample application using our scripts you will need the

Java DJK (specifically, javac) in your path. Then, simply run ‘compile.sh’ for UNIX or

‘compile.bat’ for Windows in the appropriate directory.

This will compile several class files, including the HelloPub and HelloSub classes.

Running a Test Application
You’ve written some code, generated some code, and compiled it all. Now for seeing it all work! You

will need at least one environment variable to run:

TWINOAKS_LICENSE_FILE = The full path to your evaluation license

You will also need the same COREDX environment variables needed for the compile above:

1. COREDX_TOP
2. COREDX_HOST
3. COREDX_TARGET

Run your application(s). We provide scripts to run the example hello_pub and hello_sub applications.

For UNIX:

run_sub.sh

run_pub.sh

5

5
CoreDX DDS Quick Start Guide for Java
Version 3.4 Nov 2011

For Windows:

run_sub.bat

run_pub.bat

Congratulations! You have now built and run two applications that are communicating using CoreDX

DDS.

Figure 1 shows a picture of what you have built:

You can run multiple Publishers and multiple Subscribers to immediately see the dynamic nature of the

DDS network infrastructure. These Publishers and Subscribers can be run on the same host or on

multiple hosts across a network.

Publishing

Application

(hello_pub)

Subscribing

Application

(hello_sub)

Figure 1: Example Components

6

6
CoreDX DDS Quick Start Guide for Java
Version 3.4 Nov 2011

A few notes about the Transport
The CoreDX DDS transport conforms to the Real-Time Publish-Subscribe (RTPS) Wire Protocol. This

transport does not use a stand-alone transport daemon, and does not require configuration of any

operating system services.

Configuring the Transport
The CoreDX DDS RTPS transport can be configured using the following environment variables.

Environment Variable Values Description

COREDX_IP_ADDR Valid, Local IP
address

As part of discovery, each DDS
DomainParticipant advertises local IP
addresses that peers can use to
communicate with it. If your machine has
multiple network interfaces, CoreDX DDS
will by default advertise (and use) all
interfaces for DDS communications. This
may generate unnecessary network traffic
on some of those networks. This
environment variable will limit DDS traffic
to just one interface – the interfaces
specified by the IP address.

COREDX_USE_MULTICAST “YES”, “NO” By default, CoreDX DDS RTPS will use
multicast for data communications
between DDS participants where it can. To
specify unicast data communications, set
this environment variable to “NO”. This
only effects data communications,
discovery will still use multicast.

COREDX_MULTICAST_TTL integer > 0 This is the time to live (TTL) set on all the
multicast packets (including those used for
discovery). By default, COREDX DDS uses
the operating system configured TTL
(generally “1”). Increasing this allows the
multicast packets to survive going through
network routers.

COREDX_MIN_TX_BUFFER_SIZE 400 - 65400 (in bytes) The CoreDX DDS RTPS transport
will combine multiple data packets to send
over the network to reduce network
overhead and improve performance. By
default, the transmit buffer size is dynamic.
For cases where IP fragmentation and
reassembly is not implemented well in
either the network hardware or operating
system, it is necessary to fix the transmit
buffer to a smaller size. This environment
variable controls the minimum size of the

7

7
CoreDX DDS Quick Start Guide for Java
Version 3.4 Nov 2011

Environment Variable Values Description
transmit buffer on every DataWriter within
a DomainParticipant (including Built-in
DataWriters).

COREDX_MAX_TX_BUFFER_SIZE 401-65400 (in bytes) The CoreDX DDS RTPS transport
will combine multiple data packets to send
over the network to reduce network
overhead and improve performance. By
default, the transmit buffer size is dynamic.
For cases where IP fragmentation and
reassembly is not implemented well in
either the network hardware or operating
system, it is necessary to fix the transmit
buffer to a smaller size. This environment
variable controls the maximum size of the
transmit buffer on every DataWriter within
a DomainParticipant (including Built-in
DataWriters).

COREDX_MAX_RX_BUFFER_SIZE 401 - 65536 This environment variable determines the
receive buffer size for every
DomainParticipant. By default, this buffer
is dynamically sized based on the data
packets received by the DomainParticipant.

8

8
CoreDX DDS Quick Start Guide for Java
Version 3.4 Nov 2011

A few notes about License Files
CoreDX DDS uses development and run-time licenses. A development license is required for using the

CoreDX DDS DDL compiler (coredx_ddl). A run-time license is required for making CoreDX DDS library

function calls. Both licenses are contained in a license file provided by Twin Oaks Computing. Here is an

example license file containing evaluation licenses for both development and run-time:

coredx.lic

#==

CoreDX DDS Evaluation License file

Created: <today> by Twin Oaks Computing, Inc.

Contains: 30 day evaluation development licenses, evaluation run-time licenses

#==

LICENSE PRODUCT=coredx_ddl EXP=31-Aug-2008 BUILD=Evaluation

CUSTOMER=Company_X SIG=

4ccad329d5a10b93460ff3b249cea6733f6bd408d22b5fe9cb2a2c69b0d575e69a5d

c14b436b90c2ed6b516930452b862133cf7d2a9301d46ce99865f78c998311adeb99

3f68da82b74f1583511edab1d0de61dbe065f38955dd6596f0b564639fed231b1af8

61b6df122040173804e0e61b0dba37d6913cfc66d319217df099

LICENSE PRODUCT=coredx_c EXP=31-Aug-2008 BUILD=Evaluation

CUSTOMER=Company_X SIG=

30b3c5d6f941c5ff5e46384eb1b74bd1809dfbd53ca11fa4d7442054bb260846588

c4bd7a5c7f7a986a12905b22dbdc428a67ee2d2c806ed5f1a14c35deb03e3a8ce6a

2fda8fdb7e5728c3103f239b51aca3b3911901e2e959fe020a21b7b7cb72dee8ca8

da8fa73cc69d3572738259025c212815aef2f94111580f51583e437

This evaluation license file contains two LICENSE lines. The first is the development license for the

CoreDX DDS DDL compiler. The second is the run-time license for the CoreDX DDS library. All evaluation

licenses have expiration dates. In the example file above, the licenses expire on Aug 31, 2008.

The CoreDX DDS software requires a license environment variable be set: TWINOAKS_LICENSE_FILE.

This environment variable can contain either:

 The fully qualified name of the license file

 The entire LICENSE line from the license file contained in angle brackets: < >

For development (to run the coredx_ddl compiler), you must set the TWINOAKS_LICENSE_FILE

environment variable to the license file.

For run-time, you can use either method listed above. If you have access to the license file from your

run-time environment, this is the simplest way to use the license. Simply set a TWINOAKS_LICENSE_FILE

environment variable to the license file.

If you do not have access to the license file at run-time, you can set the TWINOAKS_LICENSE_FILE

environment variable to the LICENSE line. For the run-time license in the above example license file, set

your TWINOAKS_LICENSE_FILE like:

9

9
CoreDX DDS Quick Start Guide for Java
Version 3.4 Nov 2011

% export TWINOAKS_LICENSE_FILE=”<LICENSE PRODUCT=coredx_c BUILD=Evaluation

EXP=31-Aug-2008 CUSTOMER=Company_X SIG=30b3c5d6f941c5ff5e46384eb1b74bd1

809dfbd53ca11fa4d7442054bb260846588c4bd7a5c7f7a986a12905b22dbdc428a67ee

2d2c806ed5f1a14c35deb03e3a8ce6a2fda8fdb7e5728c3103f239b51aca3b3911901e2

e959fe020a21b7b7cb72dee8ca8da8fa73cc69d3572738259025c212815aef2f9411158

0f51583e437>”

10

10
CoreDX DDS Quick Start Guide for Java
Version 3.4 Nov 2011

A Few Notes About DDS Keys
DDS provides a facility for user defined data types to identify one or more fields as a “key”. By

specifying a key, the published data will be categorized into instances. An instance refers to a collection

of samples, where each sample has an identical key value. For example, consider a data type that has a

field ‘x’ identified as the key and the type of ‘x’ is a long integer. All samples with x=5, belong to the

same instance. A DataWriter can publish several samples with x=5 and they all refer to the same

instance. The DDS middleware can be configured, via the History QoS, to keep all samples of an

instance, or only a certain number of samples.

You specify the key for your data type by inserting some additional information into the DDL file. This

provides an indication to the DDL compiler that it should generate additional code to correctly handle

the key information.

For example:

Hello_key.ddl

#ifdef DDS_IDL

#define DDS_KEY __dds_key

#else

#define DDS_KEY

#endif

struct StringMsg

{

 DDS_KEY long id;

 string msg;

};

This example adds a key called ‘id’. The #ifdef block at the beginning simply removes the “DDS_KEY”

symbol if the file is not being processed by the CoreDX DDS DDL compiler. This ensures that ddl files

maintain compatibility with standard IDL syntax.

Several fields can be marked with the DDS_KEY modifier. In this case, all ‘key’ fields are used together as

the key for the data type.

11

11
CoreDX DDS Quick Start Guide for Java
Version 3.4 Nov 2011

A few notes about the DDL Compiler (coredx_ddl)
The coredx_ddl compiler handles a few command line arguments. The following briefly describes the

command line options and arguments. (The ‘-h’ argument can be used to list all the command line

arguments accepted by the coredx_ddl compiler.)

-f <filename> Specifies the DDL file to compile. This is a required argument.

-l <language> Specifies the language to generate: ‘c’ for C code, ‘cpp’ for C++ code. The
default if not specified is ‘c’.

-d <output
directory>

Specifies the output directory where the generated source code should be
placed. By default, the files are placed in the current working directory.

-D
<preprocessor
symbol>

This option is used to specify preprocessor defines.

-I <include path> This option provides a path that will be searched to satisfy ‘#include’
directives found in the DDL file(s).

Changes from Previous Release
For current release notes, visit the Twin Oaks Computing website at:

http://www.twinoakscomputing.com/documents/CoreDX_DDS_release_notes.txt

Contact Information
Have a question? Don’t hesitate to contact us by any means convenient for you:

Web Site: http://www.twinoakscomputing.com

Support:

Email: support@twinoakscomputing.com

Phone: 720.733.7906

Twitter: TOC_CoreDX

Online Forum: http://www.twinoakscomputing.com/forum

Primary Sales Office:

Email: sales@twinoakscomputing.com

Phone: 720.733.7906

EMEA Sales Office:

Email: emea.sales@twinoakscomputing.com

Phone: +33 (0)9 62 23 72 20

http://www.twinoakscomputing.com/documents/CoreDX_DDS_release_notes.txt
http://www.twinoakscomputing.com/

12

12
CoreDX DDS Quick Start Guide for Java
Version 3.4 Nov 2011

About Twin Oaks Computing

With corporate headquarters located in Castle Rock,

Colorado, USA, Twin Oaks Computing is a company

dedicated to developing and delivering quality

software solutions. We leverage our technical

experience and abilities to provide innovative and

useful services in the domain of data

communications. Founded in 2005, Twin Oaks

Computing, Inc delivered the first version of CoreDX

DDS in 2008. The next two years saw deliveries to

over 100 customers around the world. We continue

to provide world class support to these customers

while ever expanding.

Copyright © 2011 Twin Oaks Computing, Inc.. All

rights reserved. Twin Oaks Computing, the Twin Oaks

Computing and CoreDX DDS Logos, are trademarks

or registered trademarks of Twin Oaks Computing,

Inc. or its affiliates in the U.S. and other countries.

Other names may be trademarks of their respective

owners. Printed in the USA. 12/2011

Contact

Twin Oaks Computing, Inc.

(720) 733-7906

+33 (0)9 62 23 72 20

755 Maleta Lane

Suite 203

Castle Rock, CO. 80108

www.twinoakscomputing.com

