

CoreDX DDS

Data Distribution Service

The leading Small Footprint DDS Middleware

Programmer’s Guide

Version 4.4

December 2018

ii

Copyright 2008-2018 Twin Oaks Computing, Inc, 230 Third Street, Ste 260 Castle Rock,
Colorado 80104 U.S.A. All rights reserved.

This document describes how to install and use the CoreDX DDS software.

CoreDX, CoreDX DDS, and the CoreDX DDS logo are trademarks of Twin Oaks Computing, Inc.
Object Management Group, OMG, and DDS are trademarks of the Object Management
Group. All other products or company names mentioned are used for identification
purposes only, and may be trademarks of their respective owners.

DISCLAIMER OF WARRANTY. THIS DOCUMENT IS PROVIDED "AS IS” AND ALL EXPRESS OR
IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE
HELD TO BE LEGALLY INVALID.

iii

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Preface

CoreDX DDS is a small-footprint, high-performance communications
middleware compliant with the OMG Data Distribution Service (DDS)
standard. CoreDX DDS supports multiple hardware architectures and
operating systems, and is intended to facilitate the development of robust,
near real-time, highly distributed systems.

This manual describes how to install and use the CoreDX DDS software. It is
for developers who want to integrate a high-performance, OMG compliant
data distribution middleware service into their application.

How this Guide is Organized

This Programmer’s Guide contains a number of Chapters organized in Parts.
The first Part provides an overview of the DDS technology and CoreDX DDS.
Part 2 providesguidance on installing CoreDX DDS, and walks the reader
through creating a simple first CoreDX DDS application.

The next several chapters in Part 3 make up the majority of this document,
and go into detail on different aspects of CoreDX DDS features and
functionality. This includes: DDS Entities, developing publishing and
subscribing applications, Quality of Service (QoS) settings, communication
statuses, data instances and samples, data architecture, built-in topics, and
the CoreDX DDS transports.

The last few chapters include a discussion of extensions provided by CoreDX
DDS such as the logging facility, CoreDX DDS license management,
troubleshooting assistance, and finally background about Twin Oaks
Computing.

Related Documentation

CoreDX DDS Type System

CoreDX RPC over DDS

CoreDX DDS Secure

CoreDX DDS Reference Manuals

iv

Intended Audience

This document is intended for software developers who are integrating the
CoreDX DDS software into their application(s). The guide assumes that the
reader is competent in programming languages and software development
concepts. CoreDX DDS supports multiple programming languages, and this
guide includes examples in C and C++.

Typographic Conventions

Typeface Meaning Examples

Courier Example code struct StringMsg

{

 string msg;

};

Courier Example Commands gunzip –c coredx-2.x.tar.gz

Figure 0-1: Typographic Conventions

Feedback

Twin Oaks Computing welcomes your comments. We are interested in
improving our products and we welcome your comments and suggestions.
You can provide email feedback about this document to
documents@twinoakscomputing.com.

v

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Table of Contents

Preface iii

How this Guide is Organized ... iii

Related Documentation .. iii

Intended Audience ... iv

Typographic Conventions ... iv

Feedback ... iv

Part 1: Introduction .. 2

Chapter 1 An Introduction to CoreDX DDS ... 4

1.1 Why DDS? ... 4

1.2 The case for Middleware .. 4

1.3 The case for Publish SubscribeDDS .. 5

1.4 The case for CoreDX DDS .. 11

Part 2: Getting Started ... 16

Chapter 2 Installing CoreDX DDS ... 18

2.1 Installation Requirements .. 18

2.2 CoreDX DDS Distribution Contents ... 21

2.3 CoreDX DDS Installation Procedure .. 23

2.4 Compiling for a different Target Platform .. 24

Chapter 3 First CoreDX DDS Application ... 25

3.1 Using a License ... 25

3.2 Writing the Application .. 25

3.3 Compiling Your Application with CoreDX DDS ... 29

3.4 Running Your Application with CoreDX DDS .. 32

Chapter 4 Example CoreDX DDS Applications ... 33

4.1 Environment Setup ... 33

4.2 Example 1: The Basic “Hello World” Applications .. 34

4.3 Example 2: Performance Tests ... 35

4.4 Example 3: Filtering .. 35

vi

4.5 Example 4: Dynamic Types .. 35

4.6 Example 5: No Threads ... 35

4.7 Example 6: RPC.. 35

4.8 Example 7: QoS Provider ... 36

4.9 Example 8: Shapes Demonstration ... 36

Chapter 5 Advanced Compile Options... 37

5.1 Linux and other UNIX-variant Operating Systems .. 37

5.2 Windows Operating System .. 41

Part 3: CoreDX DDS Programming Concepts .. 47

Chapter 6 DDS Entities ... 50

6.1 DDS Entity Hierarchy ... 50

6.2 DDS Entity Common Operations ... 51

6.3 DDS Entity Quality of Service .. 52

6.4 DDS Status, Listeners, Conditions and WaitSets ... 52

Chapter 7 Developing a Publishing Application ... 54

7.1 Summary of Developing a Publishing Application .. 54

7.2 The Data .. 54

7.3 The Publishing Application .. 54

7.4 Available QoS Settings .. 59

7.5 Available Listeners .. 62

Chapter 8 Developing a Subscribing Application ... 64

8.1 Summary of Developing a Subscribing Application .. 64

8.2 The Data .. 64

8.3 The Subscribing Application .. 64

8.4 Sample Status Information (SampleInfo) .. 70

8.5 Additional Subscriber / DataReader Features .. 73

8.6 QoS Policies ... 74

8.7 Available Listeners .. 77

Chapter 9 Topics .. 80

9.1 Overview ... 80

9.2 Built-In Topics .. 81

vii

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

9.3 Content Filtered Topics .. 85

9.4 Multi Topics .. 89

Chapter 10 Instances and Samples ... 90

10.1 Overview ... 90

10.2 Publishing Data ... 92

10.3 Subscribing to Data ... 93

10.4 Instance Lifecycles .. 93

10.5 Data Cache .. 97

Chapter 11 Application Data Types ... 102

11.1 Overview ... 102

11.2 Why Define the Data Types? .. 102

11.3 Data Types and Discovery... 103

11.4 Data Architecture ... 103

11.5 Data Type Definition ... 103

11.6 Data Definition Syntax .. 104

11.7 IDL and XMLLanguage Mappings .. 105

11.8 Creating Data Types .. 107

11.9 Configuring Data Types... 109

11.10 Using the CoreDX DDS Data Type Compiler ... 114

Chapter 12 Configuring Reader Specific Locators ... 118

12.1 Overview ... 118

12.2 Configuration .. 118

12.3 Generated Code.. 119

Chapter 13 Quality of Service Features .. 121

13.1 QoS Compatibility Between Publishing and Subscribing Entities 122

13.2 QoS Mutability .. 123

13.3 Quality of Service Details .. 123

Chapter 14 Communication Status ... 141

14.1 Communication Status Details ... 143

14.2 Application Access to Communication Status .. 155

Part 4: CoreDX DDS Extensions .. 171

viii

Chapter 14 CoreDX DDS Logging ... 173

Chapter 15 CoreDX DDS Transport .. 176

15.1 Overview ... 176

Chapter 16 CoreDX DDSDiscovery ... 193

16.1 Overview of CoreDX DDS Discovery .. 193

16.2 Discovering DomainParticipants ... 194

16.3 Matching DataReaders and DataWriters .. 195

16.4 Static Discovery ... 197

16.5 Centralized Discovery .. 199

16.6 Wait for Discovery ... 203

16.7 Access to Discovery Information ... 204

16.8 Discovery and Deterministic Machines ... 205

Chapter 17 Configuring Reliability Protocol .. 210

17.1 Reliability Protocol .. 210

17.2 Reliability QoS Configuration .. 216

Chapter 18 Configuring Reader Specific Locators ... 219

18.1 Overview ... 219

18.2 Configuration .. 219

Chapter 19 Dynamic Types .. 221

19.1 Overview ... 221

19.2 Subscribe with Dynamic Types.. 221

19.3 Publish with Dynamic Types ... 222

Chapter 20 Threading Options .. 223

20.1 Overview ... 223

20.2 Configuring Threading Options ... 223

Chapter 21 Transmit Buffers ... 227

21.1 Overview ... 227

21.2 Dynamic Transmit Buffers ... 227

21.3 Static Transmit Buffers .. 229

Chapter 22 Receive Buffers ... 231

22.1 Overview ... 231

ix

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

22.2 Configuration .. 231

Chapter 23 Data Batching ... 234

Chapter 24 QoS Provider ... 236

24.1 Introduction .. 236

24.2 QoS Provider Usage ... 236

24.3 QoS Provider XML Syntax ... 239

24.4 QoS Provider Integration .. 248

24.5 Unsupported ... 248

Chapter 25 Licensing ... 249

25.1 Development Licenses .. 249

25.2 Run-time Licenses ... 249

Chapter 26 Transition Notes ... 253

26.1 CoreDX DDS v3.x -> v4.0 ... 253

Chapter 27 Troubleshooting ... 254

27.1 General Troubleshooting Tools .. 254

27.2 No Communications between DDS applications .. 254

27.3 Missing or lost samples .. 255

27.4 TypeSupport version mismatch .. 257

27.5 Can’t find it here? ... 258

Chapter 28 About Twin Oaks Computing .. 260

Chapter 29 Contact Information ... 262

x

xi

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Table of Figures

Figure 0-1: Typographic Conventions .. iv
Figure 1-1: Middleware .. 5
Figure 1-2: Client Server Architecture .. 6
Figure 1-3: Publish Subscribe Architecture .. 6
Figure 1-4: Example DDS Usage ... 7
Figure 1-5: DDS Architecture .. 10
Figure 2-1: CoreDX DDS Directory Structure .. 22
Figure 6-1: DDS Entity Hierarchy .. 50
Figure 10-1: Register Instances Example .. 94
Figure 11-1: Example IDL file .. 108
Figure 11-2: IDL keys example .. 114
Figure 13-1: Configuring QoS - Sample C Code .. 121
Figure 14-1: Inconsistent Topic Status Structure ... 144
Figure 14-2: Sample Rejected Status Structure .. 146
Figure 14-3: Liveliness Changed Status Structure .. 147
Figure 14-4: Requested Deadline Missed Status Structure .. 148
Figure 14-5: Requested Incompatible QoS Status Structure .. 149
Figure 14-6: Sample Lost Status Structure ... 150
Figure 14-7: Subscription Matched Status Structure ... 151
Figure 14-8: Liveliness Lost Status Structure .. 152
Figure 14-9: Offered Deadline Missed Status Structure... 153
Figure 14-10: Offered Incompatible QoS Status Structure .. 154
Figure 14-11: Publication Matched Status Structure ... 155
Figure 14-12: Listener Hierarchy .. 157
Figure 14-13: Listener Example C Code .. 161
Figure 14-14: Listener Exampe C++ Code ... 162
Figure 14-15: Condition Example C code ... 168
Figure 14-16: Condition Example C++ code ... 169
Figure 17: Standard Discovery (peer-to-peer) architecture ... 199
Figure 18: Centralized Discovery architecture ... 200
Figure 19: Example Centralized Discovery deployment ... 203
Figure 17-1: Example DDS Usage.. 212
Figure 17-2: Example DDS Usage.. 212
Figure 25-1: Example CoreDX DDS license file ... 249
Figure 27-1: Example CoreDX DDS license file ... 258

xii

xiii

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Table of Tables

Table 2-1: CoreDX DDS Architectures and Operating Systems .. 18
Table 2-2: CoreDX DDS Languages and Compilers ... 21
Table 3-1: Sample IDL File .. 26
Table 4-1: Example - Running cdxenv.sh .. 34
Table 5-1: CoreDX DDS Libraries (UNIX Operating Systems) .. 37
Table 5-2: CoreDX DDS Libraries (Windows Operating System) .. 41
Table 5-3: Windows Dynamic Library Dependencies ... 45
Table 7-1: QoS Policies for Publishing Entities ... 60
Table 7-2: Listeners for Publishing Entities .. 62
Table 8-1: QoS Policies for Subscribing Entities ... 74
Table 8-2: Listeners for Subscribing Entities .. 77
Table 9-1: Topic Variants .. 80
Table 9-2: Built-in Topics .. 81
Table 9-3: Participant Built-in Data Type ... 83
Table 9-4: Topic Built-in Data Type .. 83
Table 9-5: Publication Built-in Data Type ... 84
Table 9-6: Subscription Built-in Data Type ... 84
Table 9-7: create_contentfilteredtopic() parameters .. 85
Table 9-8: Valid Condition Operators for Content Filters .. 86
Table 9-9: Creating a ContentFilteredTopic ... 87
Table 10-1: Instance Example ... 92
Table 10-2: Instance Example ... 97
Table 11-1: Basic User Defined Types .. 104
Table 11-2: Constructed User Defined Types ... 105
Table 11-3: Primitive Data Type Mapping .. 106
Table 11-4: coredx_ddl command line options .. 114
Table 12-1: Generated source code file names .. 119
Table 13-1: Standard QoS Policies Summary ... 123
Table 13-2: CoreDX DDS QoS Policies ... 125
Table 14-1: Communication Statuses ... 141
Table 14-2: Listener Method Signatures .. 158
Table 14-1: CoreDX DDS Logging Flags ... 174
Table 14-2: Logging QoS Configuration Example ... 174
Table 15-1: UDP Transport Multicast and Unicast Configuration Parameters 183
Table 15-2: UDP Transport Environment Variables ... 184
Table 15-3: TCP Transport Environment Variables .. 189
Table 15-4: LMT Transport Environment Variables ... 191
Table 16-1: Code Example of peer_participants QoS ... 198

xiv

Table 16-2: API Methods to Access Discovery Information ... 204
Table 17-1: CoreDX DDS RTPS_Protocol QoS Policy .. 216
Table 21-1: Transmit Buffer Configuration .. 227

2

Part 1: Introduction

This section provides an introduction of the Data Distribution Service (DDS)
and the CoreDX DDS implementation from Twin Oaks Computing, Inc.

3

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

CoreDX DDS Programmer’s Guide

4

Chapter 1 An Introduction to CoreDX DDS

Welcome to CoreDX DDS, a high-performance, small-footprint
implementation of the OMG Data Distribution Service (DDS) standard. The
CoreDX DDS Data-Centric, Publish-Subscribe messaging infrastructure
provides high-throughput, low-latency data communications.

This chapter provides an overview of the Data Distribution Service (DDS),
how applications might use DDS to meet their communication
requirements, and features of the CoreDX DDS product.

1.1 Why DDS?

Today’s enterprise systems, embedded systems, and all systems in between,
need flexible, open information systems. Most systems span multiple
technologies, hardware platforms, operating systems, and programming
languages. In addition, components of these systems have real-time
requirements. CoreDX DDS is an open standards-based, communication
middleware solution to meet the needs of these real-time distributed
systems.

1.2 The case for Middleware

Middleware is a class of software that exists between an application and the
Operating System. In deeply embedded environments, middleware exists
between the functional software and a network stack of the device. It
provides useful capabilities that are above and beyond those found in
standard Operating Systems. In the case of CoreDX DDS, the middleware
provides a facility for both publish-subscribe and client-server
communications.Figure 1-1 illustrates where middleware components fit in
the application, and how they logically bridge across multiple operating
systems and hardware architectures.

5

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Figure 1-1: Middleware

Applications that employ a communications middleware like CoreDX DDS
realize many benefits. The requirements and complexity of data
communications in a distributed system are met by the middleware
component - leaving developers more time to focus on the important
application logic. CoreDX DDS middleware supports many operating
systems and hardware architectures - the task of porting complex
communications software is already complete.

1.3 The case for Publish SubscribeDDS

Many communication middleware technologies are available. Most are
based on a functional model. For example, RPC (Remote Procedure Call)
and CORBA (Object Request Broker) are two examples of middleware that
allow function calls to be distributed across the network between a client
and a server. However, these architectures lead to tight coupling between
the client and the server; this makes these systems difficult to extend.

Client Server

Middleware

Operating
System

HARDWARE

Application

Operating
System

HARDWARE

CoreDX DDS Programmer’s Guide

6

Figure 1-2: Client Server Architecture

The client-server architecture is appropriate for centralized data processing
and works well in some systems and some use cases. In some client-server
technologies, the drawbacks are increased integration costs for new
capabilities and potential single point of failure.

An alternative to this approach is the Publish-Subscribe architecture
embodied in DDS. This architecture promotes a loose coupling between
data producers and data consumers. The architecture is flexible and
dynamic; it is easy to adapt and extend systems to changing environments
and requirements.Figure 1-3 illustrates the DDS Publish Subscribe
architecture where multiple Publishers and Subscribers exchange strongly
typed data through a common Topic. The communications are controlled
by a Quality of Service model.

Figure 1-3: Publish Subscribe Architecture

Figure 1-4is an example of how DDS might be applied in a system. This
example has several sources of “raw data”, a data processor that performs
some processing on the raw data to produce “processed data”, several end
users working with the processed data, and an administrative user
performing analysis, maintenance, or auditing functions.

Publisher

Subscriber

Subscriber

Subscriber

Data Type

Data

QoS

Topic

Publisher

7

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Figure 1-4: Example DDS Usage

In this example, the darker blue boxes represent applications
communicating over a DDS network. These applications might be running
together on 1 host, or they might be distributed over multiple hosts. A DDS
application simply publishes or subscribes to their data, without concern for
what, if anything, might be on the other end of its communications. Any of
the applications can be dynamically removed (and new applications may be
added) without impacting the existing network.

Because many systems include some natural publish-subscribe use cases as
well as some natural client-server use cases, the DDS standards include both
communication mechanisms. This document focuses on the publish-
subscribe interface to DDS. For information on programming with the
remote procedure call (RPC) or request reply APIs, please use the CoreDX
DDS RPC over DDS Programmer’s Guide.

1.3.1 DDS is an Open Standard

DDS is an open specification (documented by multiple standards) managed
by the Object Management Group (OMG). The OMG is an international,
open membership, non-profit organization that develops and manages
computer industry specifications. Hundreds of organizations, including
software end-users and commercial vendors, make up the OMG. Together
they develop and manage many of the standards widely used in the
computer industry today. The set of Data Distribution Service (DDS)
standards is an example of one of the technology standards managed by the

CoreDX DDS Programmer’s Guide

8

OMG. Other examples include the Unified Modeling Language (UML),
Model Driven Architecture (MDA) and the Common Object Request Broker
Architecture (CORBA).

There are several advantages to using a technology that conforms to an
open standard, and more advantages if that open standard is managed by
an open membership organization like the OMG. First, an open standard
promotes interoperability. Anyone, even if they are not connected with the
managing organization, can pick up an Open Standard and write a
conforming application. Second, open standards reduce the dependence on
a particular vendor. When an open standard product is available from
multiple vendors, the consumer can easily change between them. Finally,
anyone can join the managing organization and vote on the direction and
advancement of the technology. In the case of DDS, this means vendors
and users, both public and private, can influence the future of the
technology.

1.3.2 DDS is More than a Communications Middleware

The DDS standards specify the mechanism for moving data – a typical
communications middleware technology standard. However, DDS is so
much more. In addition to communications, DDS provides advanced data
management, storage, organization, filtering, redundancy, extensibility, and
security. With a rich set of features, interoperability across languages,
operating systems, hardware platforms, and implementations, DDS provides
a robust, secure infrastructure foundation for your small-scale, large-scale,
enterprise, embedded, and everything in between software system.

1.3.3 Remote Procedure Call (RPC) in addition to Publish-Subscribe

The Data Distribution Service is a publish-subscribe technology, which
provides a flexible, loosely coupled architecture suitable for many real-time
applications. However, many sophisticated projects are a natural mix of
publish-subscribe and client-server (or RPC) requirements.

The DDS Standards include API’s for publish-susbscribe, request-response,
and RPC – all implemented on top of the original DDS publish-subscribe
architecture. DDS request-response and RPC have some unique features
over other client-server type middleware, including automatic discovery,
security, and the ability to use the full set of DDS Quality of Service (QoS)
configurations.

9

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

The CoreDX DDS RPC API is fully described in the CoreDX DDS RPC
Programmer’s Guide.

1.3.4 DDS is flexible and scalable

Applications communicating with DDS might be running together on 1 host,
or they might be distributed over multiple hosts, each with different
architectures and operating systems. Applications using DDS for
communications do not need to know the details of where there other
applications are residing, or even if they exist.

The discovery mechanism built into DDS allows applications to come and go
from a DDS network without requiring any changes to the applications or
the network. This means a new system can be brought into the network,
and start sending or receiving data, without any changes to existing
applications.

1.3.5 DDS is secure

The DDS Security standard contains a complete state-of-the-art security
solution that is completely integrated into the DDS protocols (not simply
layered on top of SSL). DDS Security includes: Identification, Authentication,
Access Control, Integrity, and Confidentiality, allowing the designer full
flexibility on a topic-by-topic level.

Security configuration and usage is documented in the CoreDX DDS Security
Programmer’s Guide.

1.3.6 DDS Features

A DDS application can be a publisher of data, a subscriber of data, or both.

A Publisher is responsible for data distribution. It may publish data of
different data types. The application uses a typed DataWriter attached to
the publisher to communicate the data to be published. Both the Publisher
and the DataWriter have a Quality of Service (QoS) that affects the behavior
of the publication.

A Subscriber is responsible for receiving published data and making it
available to the receiving application. It may receive data of different data
types. The application uses a typed DataReader attached to the subscriber
to access the data. Both the Subscriber and DataReader have a QoS that
affects the behavior of the subscription. The subscribing application can

CoreDX DDS Programmer’s Guide

10

choose to block waiting for data using WaitSets or receive data
asynchronously, using Listeners.

A Topic fits between publications and subscriptions. Subscriptions must be
able to refer to specific publications. A topic fulfills this purpose: it
associates a name, a data-type, and a QoS related to the data itself.

When an application wants to publish data of a given type, it must use a
Publisher and DataWriter with all the characteristics of the desired
publication. When an application wants to subscribe to data of a given type,
it must use a Subscriber and DataReader with all the characteristics of the
desired subscription.

The following figure depicts the common DDS objects used in exchanging
data.

Figure 1-5: DDS Architecture

The following describes the actions depicted in Figure 1-5.

1. DataReaders and DataWriters are associated with a Topic

2. The publishing application calls DataWriter::write() to write the data

3. The Publisher publishes the data

4. The Subscriber receives the data

5. The Listener notifies the subscribing application of available data

11

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

6. The subscribing application calls DataReader::read() to access the data

1.4 The case for CoreDX DDS

The CoreDX DDS provides a quality, high-performance, very small footprint
implementation of the DDS standards, including the original publish-
subscribe DDS API, RTPS wire protocol, X-Types, RPC over DDS, and DDS
Security.

1.4.1 CoreDX DDS is Fast

CoreDX DDS was built from the ground up with performance in mind. The
engineering staff at Twin Oaks Computing has a long history of writing and
maintaining real-time and near real-time software, and this expertise was
used in creating CoreDX DDS. CoreDX DDS is written in ‘C’ (with additional
application language bindings available)for low overhead and memory
savings. The CoreDX DDS baseline is tested and enhanced for performance
at every step of the development process. The result is a quality DDS
implementation with extremely low latency and high throughput capacity.

CoreDX DDS data aggregation, multi-core data pipeline, and low latency
event notification provide for throughput in the +900Mbps range and
latencies below 75 usec over a 1Gbps ETHERNET network. But don’t take
our word for it. The CoreDX DDS release includes source code for example
benchmarking applications. Use these examples to compile your own
benchmark tests and see how CoreDX DDS performs in your environment,
with your data.

1.4.2 CoreDX DDS is Small

The CoreDX DDS product is 100% designed and developed by Twin Oaks
Computing to meet the OMG’s DDS specification. There is no historical
code, no code borrowed from the open source community, no code
retrofitted to meet the CoreDX DDS requirements. This allows us to deliver
a quality, fully-functional DDS implementation with the smallest footprint.
Our entire core library is less than 500 KB, and runs in environments with as
little as 100 KB of RAM. The full CoreDX DDS implementation is deployed on
FPGA’s, DSP’s, PLC’s, ECU’s and other embedded environments.

This small library size comes with a proportionally small Line of Code Count,
perfect for safety critical applications requiring DO-178B certification.

CoreDX DDS Programmer’s Guide

12

CoreDX DDS is modular and contains additional run-time memory tuning
parameters. Space constrained projects can select components of CoreDX
DDS to meet their requirements, and tune those components to reduce
unnecessary memory utilization.

For those environments that are even smaller: true microcontrollers,
CoreDX DDS Micro requires no more than 8K of RAM, allowing the benefit
of the interoperability DDS protocols down to the component level of any
system.

CoreDX DDS Micro is documented in the CoreDX DDS Micro Programmer’s
Guide.

1.4.3 CoreDX DDS is Proven & Robust

The small footprint CoreDX DDS software has over 10 years of deployment
usage in a wide variety of mission-critical, and business-critial applications.

With over 1 million deployed instances around the world and in space,
connecting components in surgical devices, military and commercial
vehicles, space exploration platforms, electrical grids, CoreDX DDS has a
proven track record of reliability, robustness, and compentent technical and
business support.

1.4.4 CoreDX DDS is Secure

CoreDX DDS complies with the DDS Security standards, providing integrated
and sophisticated security features that are fully configurable. Using state-
of-the-art security algorithms, The DDS Security standard was designed to
meet the requirements of military and critical national infrastructure
systems.

System designers may choose to use the standards compliant Twin Oaks
Computing developed security plug-ins for identification, authentication,
access control, integrity, and confidentiality, or develop their own with the
standardized plug-in API.

1.4.5 CoreDX DDS Uses Multi-Core Technologies

Hardware is moving to multiple core technology. Even embedded
processors are shipping with more than one core. This presents a challenge
to application developers, because making use of multiple cores requires
complex code that is difficult and expensive to develop and maintain. The
solution: use a multithreaded communications middleware like CoreDX DDS.

13

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

CoreDX DDS was architected from the start to take advantage of multi-core
environments. With advanced threading and protections, each CoreDX DDS
participant will use a minimum of 3 cores, and typical CoreDX DDS
applications will use between 4and 8 cores. These are single threaded
applications, taking advantage of quad-core and higher hardware, just by
using CoreDX DDS for data communications.

1.4.6 CoreDX DDS is Self Contained

In order to use CoreDX DDS for communications, the application links in the
appropriate CoreDX DDSlibraries and that is it. With no daemons and no
operating system services that need to be started and maintained, there is
no place for data to become “stuck” or for communication states to become
corrupted.

1.4.7 CoreDX DDS has Comprehensive Platform Support

With the wide array of language binding, operating system and architecture
support, CoreDX DDS runs on a wide variety of platforms, from enterprise
servers, to common desktop configurations, to embedded environments
and real-time operating systems, to FPGA’s and ‘bare-metal’ configurations.
See the Installation Requirements section for details on supported
platforms.

If you don’t find your specific platform listed, just contact us. We offer
extensive engineering services, including (often free!) custom ports to new
Operating Systems and Architectures, and well as language ports. And with
our low line of code count, custom porting is quick and easy.

1.4.8 CoreDX DDS has a great team behind it

A quality DDS implementation is important. But the organization behind the
implementation is critical. When you make a commitment to purchase a
software product, you are not only obtaining the rights to run the software
contained on the installation disk (or downloaded from the web). You are
also obtaining support services, training services, and product
enhancements for at least the next year.

The staff at Twin Oaks Computing has been developing and supporting large
software systems and global software companies for over 50 years. We
have worked beside soldiers in Kuwait, sailors onboard aircraft carriers, and
other warfighters around the world. We have supported commercial IoT
and IIoT companies with millions of products deployed world-wide. We

CoreDX DDS Programmer’s Guide

14

understand not only the importance of delivering a software product that
works, but also the importance of helping companies and their end users
make the most of their investment.

We will do the same for you. Give us a call or send us an email. We
promise you will receive prompt, friendly, and helpful service.

15

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

CoreDX DDS Programmer’s Guide

16

Part 2: Getting Started

The Getting Started section includes information to establish a development
environment and build a simple DDS publisher and subscriber. This provides
a quick overview of the development process and the associated tools.

17

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

CoreDX DDS Programmer’s Guide

18

Chapter 2 Installing CoreDX DDS

This chapter explains how to install CoreDX DDS onto your development
system.

2.1 Installation Requirements

2.1.1 Supported Architectures and Operating Systems:

CoreDX DDS is ported and built for additional environments on a regular
basis. The following table is intended to provide the reader with an
example set of supported platforms – it is not a complete list.

Table 2-1: CoreDX DDS Architectures and Operating Systems

Operating System Architecture Build Tools

Linux 2.6 x86 (32bit), x86_64, atom gcc-4.3.2 / glibc 2.8

 gcc-3.4.6 / glibc2.3

 sun4u gcc-4.1.2 /glibc 2.8

 ARMv5, ARMv7, ARMv7-A
Raspberry Pi, aarch64

gcc-4.1.2

 PPC 750, 7400, 440, e500 gcc

 PPC32 gcc

 MIPS 32, MIPS 64 gcc-3.4 / uclibc 0.9.29

 Microblaze, Nios II (soft CPU) gcc-4.1

OSX 10.7, 10.8 X86, x86_64 Llvm

WindowsXP, Vista, 7,
and 8

x86 (32bit) Visual Studio 2015, 2012, 2010,
2008, 2005

19

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Operating System Architecture Build Tools

 x86_64 (64bit) Visual Studio 2015, 2012, 2010,
2008

 MinGW / gcc-3.4.5

WinCE, Windows
Embedded

X86 Visual Studio 2008

 Arm Visual Studio 2008

Solaris 10 i86pc gcc-3.4.3

 Sun Studio 12

 sun4u gcc-3.4.3

 Sun Studio 12

QNX 6.4, 6.5, 6.6 x86 (32bit) gcc-4.2.4

 ARM v5 Gcc

VxWorks 5.5 x86 (32bit) gcc-4.1.2

 ARM v7 Gnu

 PPC405ep Diab

VxWorks 6.6, 6.8, 6.9
(RTP and DKM)

x86 (32bit) gcc-4.1.2

 PPC32 gcc

VxWorks-653 PPC gcc

NexusWare 12.3 x86 gcc

 PowerPC 440gx gcc

LynxOS SE 6.0 x86 gcc-4.3

CoreDX DDS Programmer’s Guide

20

Operating System Architecture Build Tools

LynxOS 178 PPC gcc

INTEGRITY-178B tuMP PPC, arm gcc

INTEGRITY 11 PPC, x86, arm gcc

DeOS x86 gcc

uClinux NIOS2 (softcpu) gcc

ThreadX x86 gcc

 PPCe300 gcc

Android 2.x->8.x x86 gcc

 ARM v5 gcc

iOS ARM v7 Apple

Free-RTOS ARM gcc

Thread-X x86 gcc

DSP/BIOS TI DSP TI

2.1.2 Supported Languages and Compilers

CoreDX DDS is ported and built for additional environments on a regular
basis. The following table is intended to provide the reader with an
example set of supported platforms – it is not a complete list.

21

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Table 2-2: CoreDX DDS Languages and Compilers

Language Compiler Compiler Version

C gcc

MS Visual Studio

MinGW/gcc

WindRiver Diab

Sun Studio 12

Green Hills Multi

multiple

VS2005, VS2008, VS2010,
VS2012, VS2015, VC6

3.4.5

C++ g++

MS Visual Studio

Wind River Diab

Sun Studio 12

3.4.6, 4.3.2, 5.4.0

VS2005, VS2008, VS2010,
VS2012, VS2015, VC6

Java javac 1.5

C# Mono (Linux)

Visual Studio

2.4

VS2008

2.2 CoreDX DDS Distribution Contents

The CoreDX DDS distribution includes a top-level directory: coredx-version.
This top-level directory is referred to throughout this sdocument as
COREDX_TOP, and contains the following files and subdirectories:

COPYRIGHT : File(s) describing the Copyright information for this CoreDX

CoreDX DDS Programmer’s Guide

22

DDS baseline

examples : Contains example CoreDX DDS applications

host : Contains the files required for the HOST (or build) machines
for all installed platforms

README : File(s) describing the CoreDX DDS version and build

RELEASE_NOTES : Information on changes from previous CoreDX DDS versions

scripts : Contains helpful, platform independent, scripts

target : Contains the files required for the TARGET (or deployment)
machines for all installed platforms.

The host and target subdirectories contain the CoreDX DDS libraries and
binaries in platform specific directories. This configuration allows you to
install CoreDX DDS for multiple platforms in one COREDX_TOP
directory.Figure 2-1shows the directory structure under COREDX_TOP.

Figure 2-1: CoreDX DDS Directory Structure

23

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

The host subdirectory contains the HOST tools for CoreDX DDS. The HOST
tools include CoreDX DDS DDL compiler and the Twin Oaks Computing
license hostid utility for all the installed platforms. The host subdirectory
contains two copies of these utilities for each architecture installed. For
example, consider the coredx_ddl utility for an x86 Linux system using the
gcc4.3 compiler. This utility can be found in two locations:

COREDX_TOP/host/bin/Linux_2.6_x86_gcc43_coredx_ddl

COREDX_TOP/host/Linux_2.6_x86_gcc43/bin/coredx_ddl

The targetsubdirectory contains the TARGET tools for CoreDX DDS. The
TARGET tools include the CoreDX DDS header files, the CoreDX DDS library
files, and the Twin Oaks Computing license hostid utility. The CoreDX DDS
libraries are located architecture-named subdirectories. For example,
consider the DDS libraryfor an x86 Linux system using the gcc4.3 compiler.
This library is located:

COREDX_TOP/target/Linux_2.6_x86_gcc43/lib/libdds.a

Section 3.3provides examples for configuring Makefiles to use the CoreDX
DDS directory structure.

2.3 CoreDX DDS Installation Procedure

Once you have obtained CoreDX DDS from Twin Oaks Computing (or from
an Evaluation CD or USB drive), unpack the distribution somewhere on your
system.For example, on a UNIX system this command will extract the
distribution into the current directory:

gunzip –c coredx-4.x.x-{platform}.tgz | tar xvf –

Or, for Windows:

unzip coredx-4.x.x-{platform}.zip(It’s OK to overwrite files if prompted here.)

And that’s it. There is no additional configuration required.

Customers installing CoreDX DDS for multiple platforms can unpack all the
CoreDX DDS releases into the same COREDX_TOP directory. CoreDX DDS
uses platform-specific directory names in order to avoid conflicts when
working with multiple operating systems and hardware architectures.

CoreDX DDS Programmer’s Guide

24

2.4 Compiling for a different Target Platform

CoreDX DDS supports cross compiling for a different target platform. For
example, if you are developing an INTEGRITY application, you might be
developing (compiling) on a Windows/x86 platform and targeting a
INTEGRITY/arm platform. Each platform release of CoreDX DDS contains
both the HOST and TARGET tools for one platform, so in the above example,
you will require two platform versions of CoreDX DDS, one for the HOST
(development) platform, and another for the TARGET (run-time) platform.
All platform versions of CoreDX DDS may be installed into the same
COREDX_TOP directory.

The data type compiler (coredx_ddl) is a HOST tool that generates code to
be run on the TARGET platform. When the endian of the HOST is different
than the endian of the TARGET, it is important to notify the DDL compiler,
so that it can generate the correct marshal and un-marshal code for the
TARGET platform. This is done using the “-e” option to the DDL compiler.
See Chapter 11.10 for additional information on the DDL compiler.

25

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Chapter 3 First CoreDX DDS Application

This chapter describes how to use the CoreDX DDS tools and libraries to
integrate basic DDS capabilities into your application. We’ve provided a
sample data type and application that is ported to all CoreDX DDS supported
languages and platforms with the distribution (located in
COREDX_TOP/examples). You can use these examples or create your own
while going though the following steps.

Our example Linux Makefiles were built for gcc / g++. The examples
contain different Makefiles for additional platforms. All example Makefiles
use three environment variables: COREDX_TOP, COREDX_HOST, and
COREDX_TARGET. The environment script provided with CoreDX DDS
releases can help determine the correct settings for these variables
(COREDX_TOP/scripts/cdxenv.sh and cdxenv.bat).

3.1 Using a License

Compiling with CoreDX DDS requires a development or evaluation license.
The license may be set using environment variables or software API.
(Software API is described in the Licensing section of this guide.) Use the
environment variable: TWINOAKS_LICENSE_FILE to set the location of your
CoreDX DDSlicense.

For example:

linux% export TWINOAKS_LICENSE_FILE=LICENSE_FILE

or

windows> set TWINOAKS_LICENSE_FILE=LICENSE_FILE

3.2 Writing the Application

While CoreDX DDS provides a consistent looking API across all language
bindings, there are slight differences in the code generation and compiling
instructions.

CoreDX DDS Programmer’s Guide

26

3.2.1 The ‘C’ Language Application

Create the data definition for the data type(s) you will use for
communications. The syntax used for data definition complies with the
OMG IDL v4.0 syntax for describing data types.

Note: There are references to “DDL” and “IDL” throughout this document
and the CoreDX DDS examples. Previous versions of CoreDX DDS used the
term “Data Definition Language” or “DDL” to describe data types. DDL
simply refers to the subset of IDL that defines data types.

Here is the “hello world” example provided with the distribution:

Table 3-1: Sample IDL File

hello.ddl

struct StringMsg

{

 string msg;

};

Compile the IDL to generate the type specific code using the CoreDX
DDSdata type compiler. This requires your TWINOAKS_LICENSE_FILE
environment variable be set as described above. Assuming the name of the
IDL file is hello.ddl:

% COREDX_TOP/host/COREDX_HOST/bin/coredx_ddl –f

hello.ddl

The compilation will generate the following files (names are based on the
IDL filename):

hello.h and .c

helloTypeSupport.h and .c

helloDataReader.h and .c

helloDataWriter.h and .c

Create code to publish data of this data type. Our sample Hello World
publisher is located in COREDX_TOP/examples/hello_c/hello_pub.c.

27

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Create code to subscribe to data of this data type. Our sample Hello World
subscriber is located in COREDX_TOP/examples/hello_c/hello_sub.c.

3.2.2 The ‘C++’ Language Application

Create the data definition for the data type(s) you will use for
communications. The syntax used for data definition complies with the
OMG IDL v4.0 syntax for describing data types. The C++ application uses the
same IDL type definition as the C program in the previous section.

Compile the IDL to generate the type specific code using the CoreDX
DDSdata type compiler. This requires your TWINOAKS_LICENSE_FILE
environment variable be set as described above. Assuming the name of the
DDL file is hello.ddl:

% COREDX_TOP/host/COREDX_HOST/bin/coredx_ddl –l cpp –f

hello.ddl

The compilation will generate the following files (names are based on the
IDL filename):

hello.hh and .cc

helloTypeSupport.hh and .cc

helloDataReader.hh and .cc

helloDataWriter.hh and .cc

Create code to publish data of this data type. Our sample Hello World
publisher is located in COREDX_TOP/examples/hello_cpp/hello_pub.cc.

Create code to subscribe to data of this data type. Our sample Hello World
subscriber is located in COREDX_TOP/examples/hello_cpp/hello_sub.cc.

3.2.3 The ‘Java’ Language Application

Create the data definition for the data type(s) you will use for
communications. The syntax used for data definitioncomplies with the
OMG IDL v4.0 syntax for describing data types. The Java application uses
the same IDL type definition as the C program in the previous section.

Compile the IDL to generate the type specific code using the CoreDX DDS
data type compiler. This requires your TWINOAKS_LICENSE_FILE
environment variable be set as described above. Assuming the name of the
IDL file is hello.ddl:

CoreDX DDS Programmer’s Guide

28

% COREDX_TOP/host/COREDX_HOST/bin/coredx_ddl –l java –f

hello.ddl

The compilation will generate the following files (names are based on the
data type(s) defined in the IDL file):

StringMsg.java

StringMsgTypeSupport.java

StringMsgDataReader.java

StringMsgDataWriter.java

Create code to publish data of this data type. Our sample Hello World
publisher is located in COREDX_TOP/examples/hello_java/HelloPub.java.

Create code to subscribe to data of this data type. Our sample Hello World
subscriber is located in COREDX_TOP/examples/hello_java/HelloSub.java.

3.2.4 The ‘C#’ Language Application

Create the data definition for the data type(s) you will use for
communications. The syntaxused for data definition complies with the
OMG IDL v4.0 syntax for describing data types. The C# application uses the
same IDL type definition as the C program in the previous section.

Compile the IDL to generate the type specific code using the CoreDX DDS
data type compiler. This requires your TWINOAKS_LICENSE_FILE
environment variable be set as described above. Assuming the name of the
IDL file is hello.ddl:

% COREDX_TOP/host/COREDX_HOST/bin/coredx_ddl –l csharp –

f hello.ddl

The compilation will generate the following files (names are based on the
data type(s) defined in the IDL file):

StringMsg.cs

StringMsgTypeSupport.cs

StringMsgDataReader.cs

StringMsgDataWriter.cs

Create code to publish data of this data type. Our sample Hello World
publisher is located in COREDX_TOP/examples/hello_csharp/hello_pub.cs.

Create code to subscribe to data of this data type. Our sample Hello World
subscriber is located in COREDX_TOP/examples/hello_csharp/hello_sub.cs

29

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

3.3 Compiling Your Application with CoreDX DDS

Compile your application(s). Our Hello World example creates two
applications, one for the publisher and one for the subscriber. This is not
necessary, and is completely dependent on your application architecture.
Your application will require the objects from the generated type support
code above, as well as your publisher and/or subscriber code.

The examples in this section assume a UNIX-based operating system.
Compiling for other operating systems may require additional
considerations. Please refer to Part 2:Chapter 5: Advanced Compile Options
for additional information on compiling CoreDX DDS applications for your
specific operating system.

3.3.1 The ‘C’ Language Application

CoreDX DDS will require the following paths and libraries when compiling
your application:

Include Path: \

-I${COREDX_TOP}/target/include

Library Path: \

-L${COREDX_TOP}/target/${COREDX_TARGET}/lib

Static Libraries: -ldds

We’ve provided Makefilesand Visual Studio project files for compiling our
examples, and you can use these as a reference for compiling your
application. Our Makefiles require three environment variables:

1. COREDX_TOP
2. COREDX_HOST
3. COREDX_TARGET

The COREDX_TOP is a path name to the location of your CoreDX DDS
distribution(s). COREDX_HOST and COREDX_TARGET are the platform
architectures you are compiling on and compiling for (these can be the
same). These values can be set manually, or determined by running the
script: COREDX_TOP/scripts/cdxenv.sh or cdxenv.bat.

Our Makefiles will run the CoreDX DDS data type compiler to generate the
type specific code as well as compile the applications. To compile the Hello
World sample application using our Makefile you will need a make program
(for example gnu make or Microsoft nmake) and the compiler (for example,
gcc or cl.exe) in your path. Then, simply type ‘make’ (or ‘nmake -f

CoreDX DDS Programmer’s Guide

30

NMakefile’) in the appropriate directory.This will compile two applications:
hello_pub and hello_sub.

3.3.2 The ‘C++’ Language Application

CoreDX DDS will require the following paths and libraries when compiling
your application:

Include Path: \

-I${COREDX_TOP}/target/include

Library Path: \

-L${COREDX_TOP}/target/${COREDX_TARGET}/lib

Static Libraries: -lddscpp–ldds

We’ve provided Makefiles for compiling our examples, and you can use
these as a reference for compiling your application. Our Makefile requires
three environment variables:

1. COREDX_TOP
2. COREDX_HOST
3. COREDX_TARGET

The COREDX_TOP is a path name to the location of your CoreDX DDS
distribution(s). COREDX_HOST and COREDX_TARGET are the platform
architectures you are compiling on and compiling for (these can be the
same). These values can be set manually, or determined by running the
script: COREDX_TOP/scripts/cdxenv.sh or cdxenv.bat.

Our Makefiles will run the CoreDX DDS data type compiler to generate the
type specific code as well as compile the applications. To compile the Hello
World sample application using ourLinux Makefile you will need a ‘make’
program and a C++ compiler in your path. Then, simply type ‘make’ (or
‘nmake -f NMakefile’) in the appropriate directory.

This will compile two applications: hello_pub and hello_sub.

3.3.3 The ‘Java’ Language Application

We’ve provided scripts for compiling our java examples, and you can use
these as a reference for compiling your application. Our scripts require
three environment variables:

1. COREDX_TOP
2. COREDX_HOST
3. COREDX_TARGET

31

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

The COREDX_TOP is a path name to the location of your CoreDX DDS
distribution(s). COREDX_HOST and COREDX_TARGET are the platform
architectures you are compiling on and compiling for (these can be the
same). These values can be set manually, or determined by running the
script: COREDX_TOP/scripts/cdxenv.sh or cdxenv.bat.

Our scripts will run the CoreDX DDS data type compiler to generate the type
specific code as well as compile the applications. To compile the Hello
World sample application using our Linux scripts you will need ‘javac’ in
your path. Then, simply type ‘compile.sh’ (or ‘compile.bat’ for Windows) in
the appropriate directory.

This will create a jar file with the two hello applications: HelloPub and
HelloSub. We also provide scripts to run these java applications:
run_pub.sh and run_sub.sh (.bat scripts are provided for Windows).

3.3.4 The ‘C#’ Language Application

We’ve provided Makefiles and Visual Studio project files for compiling our
examples, and you can use these as a reference for compiling your
application. Our Makefiles require three environment variables:

1. COREDX_TOP
2. COREDX_HOST
3. COREDX_TARGET

The COREDX_TOP is a path name to the location of your CoreDX DDS
distribution(s). COREDX_HOST and COREDX_TARGET are the platform
architectures you are compiling on and compiling for (these can be the
same). These values can be set manually, or determined by running the
script: COREDX_TOP/scripts/cdxenv.sh or cdxenv.bat.

 Our Makefiles will run the CoreDX DDS data type compiler to generate the
type specific code as well as compile the applications. To compile the Hello
World sample application using our Makefile on Linux you will need the
MONO CSharp compiler (gmcs) in your path. Then, simply type ‘make’ in
the appropriate directory.This will compile two applications: hello_pub.exe
and hello_sub.exe.

CoreDX DDS Programmer’s Guide

32

3.4 Running Your Application with CoreDX DDS

You will need at least one environment variable to run your applications
with CoreDX DDS:

TWINOAKS_LICENSE_FILE: (refer to Using a License, above)

Run your application(s). The sample Hello World has two applications:
hello_pub (or hello_pub.exe or HelloPub.class) and hello_sub (or
hello_sub.exe or HelloSub.class). The subscriber application (hello_sub) will
print out the messages it receives from the publishing application
(hello_pub). The publisher will keep sending out messages until killed. The
subscriber will keep listening for messages until killed.

You can run multiple Publishers and multiple Subscribers to immediately see
the dynamic nature of the DDS network infrastructure.

33

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Chapter 4 Example CoreDX DDS Applications

CoreDX DDS is bundled with a number of example applications. These
applications including working source code and Makefiles to demonstrate
how to write, compile, and run CoreDX DDS applications. Most of the
example applications are included in the ${COREDX_TOP}/examples
directory (exceptions are noted below).

This section includes a description of each of the example programs
included in the CoreDX DDS release.

4.1 Environment Setup

All the Makefiles in the CoreDX DDS example application require a few
environment variables.

1. COREDX_TOP
2. COREDX_HOST
3. COREDX_TARGET

The COREDX_TOP is a path name to the location of your CoreDX DDS
distribution(s). COREDX_HOST and COREDX_TARGET are the platform
architectures you are compiling on and compiling for (these can be the
same). These values can be set manually, or determined by running the
script: COREDX_TOP/scripts/cdxenv.sh or cdxenv.bat.

If you have one CoreDX DDS platform architecture installed, the cdxenv
script will print out the appropriate commands to set these environment
variables. If you have multiple CoreDX DDS platform architectures installed,
the cdxenv script will list all your platform architectures and prompt you for
the correct HOST and PLATFORM architectures before printing the
commands to set these environment variables.

Table 4-1: Example - Running cdxenv.sh provides an example of running
cdxenv.sh on a Linux machine where multiple CoreDX DDS platform
architectures are installed.

CoreDX DDS Programmer’s Guide

34

Table 4-1: Example - Running cdxenv.sh

cdxenv Example

/home/bob/coredx-4.0.2/scripts> ./cdxenv.sh

 1: Linux_2.6_mips32_gcc34

 2: Linux_2.6_x86_64_gcc43

 3: Linux_2.6_x86_gcc43

 4: NexusWare_ppc440_gcc

 5: SunOS_5.10_sun4u_gcc

 6: VxWorks_6.6_x86_gcc

Please select the HOST platform [2]: 2

 1: Linux_2.6_mips32_gcc34

 2: Linux_2.6_x86_64_gcc43

 3: Linux_2.6_x86_gcc43

 4: NexusWare_ppc440_gcc

 5: NexusWare_x86_gcc

 6: SunOS_5.10_sun4u_gcc

 7: VxWorks_6.6_x86_gcc

Please select the TARGET platform [2]: 7

export COREDX_TOP=/home/bob/coredx_v3.1.0;

export COREDX_HOST=Linux_2.6_x86_64_gcc43;

export COREDX_TARGET=VxWorks_6.6_x86_gcc;

export LD_LIBRARY_PATH=/home/bob/coredx_v3.1.0/target/VxWor

ks_6.6_x86_gcc/lib

4.2 Example 1: The Basic “Hello World” Applications

CoreDX DDS provides three example “Hello World” applications: a ‘C’
version, a ‘C++’ version, a ‘C#’ version, and a Java version. These are simple
applications that show the basic usage of the CoreDX DDS entities for
sending and receiving data.

Each of these “Hello World” examples contains two applications: one that
will publish a “Hello World” message and one that will subscribe to and
receive the “Hello World” message.

The hello world examples are located in the examples directory:

hello_c/

hello_cpp/

hello_csharp/

hello_java/

35

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Makefiles are provided for all platform architectures supported by CoreDX
DDS, so these applications can be run on a variety of operating systems and
languages.

4.3 Example 2: Performance Tests

CoreDX DDS also provides sample performance benchmarking source code
for latency and bandwidth benchmarking. These applications provide an
example of a more sophisticated CoreDX DDS application. In addition, they
allow you to determine the performance of CoreDX DDS with your
computers and networking hardware.

The performance examples are located in the examples directory:

latency_test\

bwtest\

Makefiles are provided for a variety of platform architectures.

4.4 Example 3: Filtering

CoreDX DDS provides an example of using Content Filtered Topics in the
“dds_filter” and “dds_filter_cpp” example applications. Makefiles are
provided for a variety of platform architectures.

4.5 Example 4: Dynamic Types

CoreDX DDS provides an example of using Dynamic Types in the “dyntype”
example application. Makefiles are provided for a variety of platform
architectures.

4.6 Example 5: No Threads

CoreDX DDS provides an example of using CoreDX DDS in a single-threaded
mode: the “hello_nothr” example application. This application
demonstrates the API for using CoreDX DDS without additional threads.

4.7 Example 6: RPC

CoreDX DDS provides an example of using the CoreDX DDS RPC API: the
“rpc_fcall” example application. For more information about using the RPC
and request-response API, refer to the RPC Programmer’s Guide.

CoreDX DDS Programmer’s Guide

36

4.8 Example 7: QoS Provider

CoreDX DDS provides an eample of configuring QoS policies in an external
XML file, and applying them dynamically to entities created at run-time.
This example application can be found in the “qos_provider” directory.

4.9 Example 8: Shapes Demonstration

The java source code for the CoreDX DDS Shapes demonstration is freely
available from the Twin Oaks Computing website (it is not packaged as part
of the CoreDX DDS release). The Shapes demonstration provides examples
of medium complexity C and Java applications using CoreDX DDS for
communications. A specialized version of the CoreDX DDS Shapes
demonstration is available for Android platforms.

For additional information and instructions for downloading and using, visit
the Twin Oaks Computing website:

http://www.twinoakscomputing.com/coredx/shapes_demo

http://www.twinoakscomputing.com/coredx/shapes_demo

37

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Chapter 5 Advanced Compile Options

CoreDX DDS includes several libraries that can be used to develop CoreDX
DDS applications. Some libraries are required for any CoreDX DDS
application. Some libraries include advanced DDS features that should only
be used if necessary. Some libraries provide additional debugging
information. For all of these libraries, we include a static and dynamic
library option (for operating systems that support this distinction).

This section describes the different options available to compile a CoreDX
DDS application for different operating system environments.

5.1 Linux and other UNIX-variant Operating Systems

Table 5-1lists all the libraries provided with the Linux platform release of
CoreDX DDS. Other UNIX-variant operating systems may include a sub-set
of these libraries (depending on the CoreDX DDS features supported for
each particular operating system).

Table 5-1: CoreDX DDS Libraries (UNIX Operating Systems)

Language library file name Description

C libraries

 libdds core library (static and dynamic libraries)

 libdds_cf core with content filter library (static and
dynamic libraries)

 libdds_noto Minimal core library: no type object (static and
dynamic libraries)

 libdds_dyntype Dynamic Types extension (static and dynamic
libraries)

 libdds_qos_provider QoS Provider extension (static and dynamic
libraries)

CoreDX DDS Programmer’s Guide

38

Language library file name Description

 libdds_libxml2api XML API extension (static and dynamic
libraries)

 libcdx_tport_lmt Local Machine Transport extension (static and
dynamic libraries)

 libcdx_tport_tcp TCP transport extension (static and dynamic
libraries)

 libxxx_log Every C library has an equivalent library version
with logging enabled.

C++
libraries

 libdds_cpp C++ language binding extension (static and
dynamic libraries)

 libdds_cpp_cf C++ language binding for content filters
extention, this extension replaces the
libdds_cpp extension (static and dynamic
libraries)

 Libdds_cpp_noto Minimal C++ language binding: no type object,
this extension replaces the libdds_cpp
extension (static and dynamic libraries)

 libdds_cpp_dyntype C++ Dynamic Types extension (static and
dynamic libraries)

 libdds_cpp_qos_provider QoS Provider extension for the cpp language
binding (static and dynamic libraries)

 libdds_rpc_cpp RPC and request-reply extension (static and
dynamic libraries)

 libxxx_cpp_log Every C++ library has an equivalent library
version with logging enabled.

C# libraries

39

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Language library file name Description

 coredx_csharp.dll C# language binding: contains all features in
one library

 libdds_csharp C# language binding: native library

 libdds_csharp_log C# language binding – native library with
logging

Java libraries

 libdds_java Java language binding – native library

 libdds_java_log Java language binding – native library with
logging

CoreDX DDS provides both static (“.a”) and dynamic (“.so”) libraries, so the
application developer can choose the appropriate type of library to use. All
our example applications contain Makefiles that illustrate the use of the
different libraries and provide a good reference for CoreDX DDS library
usage.

5.1.1 Linking with Static Libraries

A simple CoreDX DDS application written in ‘C’ requires the core library:
libdds.a. The Makefile in the “hello_c” sample application provides an
example of using the core library.

A simple CoreDX DDS application written in ‘C++’ requires the C++ language
binding library: libdds_cpp.ain addition to the core library: libdds.a. The
Makefile in the “hello_cpp” sample application provides an example of
using the C++ library.

There are 4 versions of the base (required) CoreDX DDS library:

 libdds

 libdds_cf

 libdds_noto

 libdds_log

CoreDX DDS Programmer’s Guide

40

An application will link only 1 of the above libraries. Other libraries are
extensions of one the above base libraries, and will be linked in addition to
the base library. For example: a CoreDX DDS application using content
filters must use the content filter library in place of the core library. A ‘C’
application will use libdds_cf.a. A ‘C++’ application will use
libdds_cf.aandlibdds_cpp_cf.a (to provide the C++ language binding
extension). The Makefile in the “dds_filter” sample application provides an
example of using the content filter library.

To enable CoreDX DDS logging (refer to Part 4:Chapter 14CoreDX DDS
Logging for information on CoreDX DDS logging), a CoreDX DDS application
must use the logging library in place of the core library, and to be complete,
may also link in the log versions of all the extension libraries. A ‘C’
application will use libdds_log.a. A ‘C++ application will use libdds_log.aand
libdds_cpp_log.a.

There is no special configuration required to run a CoreDX DDS application
linked with static libraries. Simply set the TWINOAKS_LICENSE_FILE
environment variable appropriately as for any CoreDX DDS application.

5.1.2 Linking with Dynamic Libraries

In addition to linking in the correct CoreDX DDS libraries, the
LD_LIBRARY_PATH environment variable must be set in order to run
dynamically linked CoreDX DDS applications.

To link with dynamic libraries, refer to section 5.1.1: Linking with Static
Libraries above and replace the “.a” libraries with the “.so” version of the
libraries.

To run a CoreDX DDS application compiled with dynamic libraries, the
LD_LIBRARY_PATH environment variable must be set, in addition to the
TWIN OAKS_LICENSE_FILE environment variable.

5.1.3 Comiling with –fPIC (Linux platforms)

For Linux bilds, CoreDX DDS also provides versions of the libraries that may
be compiled with the –fpic option. These libraries are located in an “fpic”
subdirectory: <COREDX_TARGET>/lib/fpic.

41

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

5.2 Windows Operating System

Table 5-2lists all the libraries provided with the Windows platform release
of CoreDX DDS.

Table 5-2: CoreDX DDS Libraries (Windows Operating System)

Language library file name Description

C
libraries

 dds core library (static and
dynamic libraries)

 dds_cf core with content filter library
(static and dynamic libraries)

 dds_noto Minimal core library: no type
object (static and dynamic
libraries)

 dds_dyntype Dynamic Types extension
(static and dynamic library)

 dds_qos_provider

QoS Provider extension (static
and dynamic libraries)

 dds_xml XML API extension (static and
dynamic libraries)

 cdx_tport_tcp TCP transport extension (static
and dynamic libraries)

 dds_xxx_log
dds_xxx_d
dds_xxx_d_log

Every C library has an
equivalent library version with
logging enabled, with debug
enabled, and with both logging
and debug enabled.

C++ libraries

CoreDX DDS Programmer’s Guide

42

Language library file name Description

 dds_cpp C++ language binding
extension (static and dynamic
libraries)

 dds_cpp_cf C++ language binding for
content filters extention, this
extension replaces the
libdds_cpp extension (static
and dynamic libraries)

 dds_cpp_noto Minimal C++ language binding:
no type object, this extension
replaces the libdds_cpp
extension (static and dynamic
libraries)

 dds_cpp_dyntype C++ Dynamic Type extension
(dynamic library)
(debug version)

 dds_cpp_qos_provider C++ Dynamic Types extension
(static library)
(debug version)

 dds_rpc_cpp RPC and request-reply
extension (static and dynamic
libraries)

 dds_cpp_xxx_log
dds_cpp_xxx_d
dds_cpp_xxx_d_log

Every C++ library has an
equivalent library version with
logging enabled, with debug
enabled, and with both logging
and debug enabled.

C# libraries

 coredx_csharp C# language binding: contains
all features in one library

43

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Language library file name Description

 dds_csharp C# language binding – native
library

 dds_rpc_csharp RPC and request/reply
extension for C# language
binding

 dds_csharp_log C# language binding – native
library with logging

Java libraries

 dds_java Java language binding – native
library

 dds_java_log Java language binding – native
library with logging

Both static (“_static.lib”) and dynamic (“.dll and .lib”) libraries are provided,
along with variant libraries with debug and logging enabled. The application
developer can choose the appropriate type of library to use. All our
example applications contain Makefiles that illustrate the use of the
different libraries and provide a good reference for CoreDX DDS library
usage.

5.2.1 Linking with Static Libraries

A simple CoreDX DDS application written in ‘C’ requires the core library:
dds_static.lib. The NMakefile in the “hello_c” sample application provides
an example of using the core library.

A simple CoreDX DDS application written in ‘C++’ requires the C++ language
binding library: dds_cpp_static.lib in addition to the core library:
dds_static.lib. The NMakefile in the “hello_cpp” sample application
provides an example of using the C++ library.

A CoreDX DDS application using content filters must use the special content
filter library in place of the core library. A ‘C’ application will use
dds_cf_static.lib. A ‘C++’ application will use dds_cf_static.lib
anddds_cpp_cf_static.lib. The NMakefile in the “dds_filter” sample
application provides an example of using the content filter library.

CoreDX DDS Programmer’s Guide

44

A CoreDX DDS application using dynamic types must use the special
dynamic type library in addition to the core library. A ‘C’ application will
use dds_static.lib and dds_cf_static.lib. Dynamic types for C++ are not yet
supported. The NMakefile in the “dyntype” sample application provides an
example of using the dynamic type library.

To enable CoreDX DDS logging (refer to Part 4:Chapter 14CoreDX DDS
Logging for information on CoreDX DDS logging), a CoreDX DDS application
must use the logging library in place of the core library. A ‘C’ application
will use dds_log_static.lib. A ‘C++ application will use dds_log_static.lib and
dds_cpp_log_static.lib. There are also content filter and dynamic type
libraries with logging enabled.

There is no special configuration required to run a CoreDX DDS application
linked with static libraries. Simply set the TWINOAKS_LICENSE_FILE
environment variable appropriately as for any CoreDX DDS application.

NOTE: To build an application linked to static libraries, do not include
/DCOREDX_DLL in the compile flags.

5.2.2 Linking with Dynamic Libraries

Additional compiler flags are required to build an application linked with
dynamic libraries. Include the following in the compile flags:

/MD
/DCOREDX_DLL

Note: the “/MD” specifies dynamically linked applications, while “/MT” is for
statically linked applications. To link a dynamic application with debug
support, replace “/MD” with “/MDd” and link to the libraries with “_d” in
their name.

To link with dynamic libraries, refer to section 5.2.1: Linking with Static
Libraries above but replace the “_static.lib” libraries with the “.lib” version
of the libraries.

There are a few additional rules for linking the correct CoreDX DDS
Windows dynamic libraries, due to the nature of Windows dynamic
libraries. These rules are described below.

45

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Table 5-3: Windows Dynamic Library Dependencies

If your application is using: It must also link in the following:

dds_cf.dll, .lib N/A (standalone library)

dds_cf_log.dll, .lib N/A (standalone library)

dds_cpp_cf.dll, lib dds_cf.lib

dds_cpp_cf_log.dll, .lib dds_cf_log.lib

dds_cpp.dll, lib dds.lib

dds_cpp_log.dll, lib dds_log.lib

dds.dll, lib N/A (standalone library)

dds_dyntype.dll, lib dds_cf.lib

dds_dyntype._log.dll, lib dds_cf_log.lib

dds_java.dll, lib N/A (applications do not link this library)

dds_log.dll, lib N/A (standalone library)

To run an application linked to CoreDX DDS dynamic libraries, the CoreDX
DDS libraries must be in your PATH environment variable. For example:

set

PATH=%PATH%;%COREDX_TOP%\target\%COREDX_TARGET%\lib

In addition, the TWINOAKS_LICENSE_FILE environment variable must be set
correctly.

5.2.3 Dynamic Type Support Library

It may be desirable to create a dynamic library containing the CoreDX DDS
generated type support code. This requires some special configuration for
Windows.

CoreDX DDS Programmer’s Guide

46

First, the generated type support code must be compiled with these
additional flags:

/MD (for dynamic applications. Replace with “/MDd” for debug)
/DCOREDX_DLL

/DCOREDX_DLL_TS

/DCOREDX_DLL_TS_EXPORTS

/LD

Note the “/MD” is for dynamically linked applications, while “/MT” is for
statically linked applications. To link a dynamic application with debug,
replace “/MD” with “/MDd”.

The application linking in the dynamic type support library must be
compiled with these additional flags:

/MD

/DCOREDX_DLL

/DCOREDX_DLL_TS

Then include the dynamic type support library on the link line with the
appropriate CoreDX DDS libraries.

To run this resulting application, ensure the generated dynamic type
support library is available in your path (in addition to the CoreDX DDS
libraries). In addition, the TWINOAKS_LICENSE_FILE must be set
appropriately.

47

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Part 3: CoreDX DDS Programming Concepts

This section provides a more detailed examination of the considerations for
designing and developing applications that make effective use of the
CoreDX DDS middleware. This includes data architecture, Quality of Service
configuration, data access patterns, and status event handling.

49

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

CoreDX DDS Programmer’s Guide

50

Chapter 6 DDS Entities

The DDS Standard defines an architecture that represents an object-
oriented model of entities that compose the DDS API. These entities serve
as the interface between the middleware and the application software. In
order to develop a DDS enabled application, a developer must create,
interact with, and destroy these DDS entities.

This chapter provides an overview of the DDS Entities and related concepts.
Subsequent chapters will provide more details and examples to fully
illustrate the API.

6.1 DDS Entity Hierarchy

The primary entities that make up the DDS API are structured in a hierarchy.
Each entity in the hierarchy exposes a related set of operations from the
API. The programmer interacts with the CoreDX DDS middleware through
these DDS entities. For example, the common operations on these entities
include creation, destruction, get and set QoS, get and set listeners, get
status.

Figure 6-1: DDS Entity Hierarchy

The DomainParticipantFactory is the initial object available to applications.
It is a singleton, meaning that only one instance of this object exists within

DomainParticipantFactory

DomainParticipant

Topic Publisher

DataWriter

Subscriber

DataReader

51

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

an application. It is used as a factory to create and delete
DomainParticipants.

The DomainParticipant object is the factory for Publishers, Subscribers, and
Topics. The DomainParticipant is a container for all of the entities that it
creates. The DomainParticipant exists within a ‘DOMAIN’. All entities
created from a DomainParticipant belong to the same DOMAIN as their
parent participant. Entities within a DOMAIN may communicate. Entities in
different DOMAINS will not communicate. The DOMAIN specifies a
fundamental separation or scope of data.

The Topic entity provides a logical set of homogenous data. The Topic exists
within a domain, and has a name and a data type. DataReaders and
DataWriters are logically connected by a common topic.

A Publisher entity is a factory for DataWriters. The Publisher is a container
for all the DataWriters that it creates. A DataWriter exists within a single
Publisher, and is associated with a single Topic. A DataWriter is capable of
publishing a single data type that matches its Topic.

A Subscriber entity is a factory for DataReaders. The Subscriber is a
container for all the DataReaders that it creates. A DataReader exists within
a single Subscriber, and is associated with a single Topic. A DataReader is
capable of reading a single data type that matches its Topic.

6.2 DDS Entity Common Operations

Each Entity shares a set of common operations. These operations allow the
application to control basic aspects of the entity. For example, an Entity
must be enabled before it will participate in communications. If the entity is
not enabled automatically by its parent factory, then the enable() method
must be called manually.

enable()

get_qos()

set_qos()

get_listener()

set_listener()

get_statuscondition()

get_status_changes()

CoreDX DDS Programmer’s Guide

52

6.3 DDS Entity Quality of Service

The behavior of DDS communication is highly configurable. This
configuration is performed using Quality of Service policies. Each of these
primary DDS Entities accepts Quality of Service parameters to control their
behavior. The parent factory maintains a default configuration of QoS for its
children. If no QoS is provided at creation time, then these defaults are
used. An entity’s QoS can be accessed by calling get_qos() on the entity.
After an entity is created, its QoS can be changed by directly calling
set_qos() on the entity. If the entity is not yet enabled, then any QoS policy
can be changed. However, after the entity is enabled, only a subset of QoS
policies can be changed on the fly. See the Chapter on QoS Policies for
details.

6.4 DDS Status, Listeners, Conditions and WaitSets

Each entity maintains a set of status information. This information
represents the occurrence of significant events within the middleware. For
example, the “Data Available” or “Publication Matched” statuses. The
CoreDX DDS middleware supports multiple notification methods to
communicate status information to the application. Listener callbacks can
be installed, supporting asynchronous notification. Alternatively, the
application can initialize a WaitSet and block waiting for a specific set of
status conditions. This represents synchronous notification. Finally, the
application can choose to poll the middleware using the
get_status_changes() method.

53

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

CoreDX DDS Programmer’s Guide

54

Chapter 7 Developing a Publishing Application

This chapter describes the development process for DDS publishing
applications.

7.1 Summary of Developing a Publishing Application

The steps for creating a publishing application are as follows:

1. Create or obtain the data typesfor the application data.

2. Use the CoreDX DDS data typescompiler to compile the data types.
The type-specific support and DataWriter are created as a result of
compiling the data types.

3. Write the publishing application.

4. Compile the publishing application, linking with the generated code
from step 2 and the applicable CoreDX DDS libraries.

7.2 The Data

DDS enabled applications are inherently data-centric. In order for these
data-centric applications to perform efficiently, it is necessary to have a
well-considered data model, which is usually implemented in either IDL or
XML.[Data types may also be created dynamically at run-time, or discovered
via DDS Discovery.]

For more information on the data types supported by the CoreDX DDS data
type compiler, seeApplication Data Types.

7.3 The Publishing Application

Note: DDS names may be different between the different language
bindings. Some languages use a DDS namespace, while the C language
binding augments names to include the namespace as a prefix. For
example, in C++ we might reference
DDS::DomainParticipantFactory::create_participant(), whereas in C, this
would look like DDS_DomainParticipantFactory_create_participant(). For
purposes of illustration, the examples in this section are written in C++, and
assume that the DDS namespace is in use.

55

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

A publishing application, if using compiled data types, must include the
generated Type, TypeSupport, and DataWriter header files.

7.3.1 Initialize the DomainParticipantFactory

This is the first step for any application communicating using DDS, and
initializes the CoreDX DDS middleware for use.

In the ‘C’ language binding, there is initialization the
DomainParticipantFactory.

In the ‘C++’, ‘C#’, and Java language bindings, the application must get an
instance of the DomainParticipantFactory in order to use it (for example: to
set a license or create a DomainParticipant):

DomainParticipantFactory * dpf =

DomainParticipantFactory::get_instance();

7.3.2 Create a DomainParticipant

The DomainParticipant represents the participation of an application in a
virtual DDS network, linking all applications that share the same Domain ID.
Several independent DDS “networks” (in DDS terms, these are different
Domains) can coexist in the same physical network without interfering (or
even being aware) of each other.

A DDS application may contain more than 1 DomainParticipant, in order to
communicate in multiple DDS Domains, or otherwise organize the
application’s communication events.

In addition, the DomainParticipant acts as a factory for creating Topics,
Publishers (and Subscribers).

 When creating a DomainParticipant, you will be able to specify:

Domain ID The unique identifier for the domain this application
will be publishing in

QoS for the
DomainParticipant

Describes the QoS for the Domain Participant

Listener Allows the application to attach listeners to the
domain participant.

CoreDX DDS Programmer’s Guide

56

Listener Status Mask Sets which listeners are active

Security Properties If using CoreDX DDS Secure, the security
configuration for this DomainParticipant

[There are additional items to initialize a secure DomainParticipant, this is
described in the CoreDX DDS Security Programmer’s Guide.] To create a
DomainParticipant in the 123 domain, using the default DomainParticipant
QoS, and no listeners, use the following:

DomainParticipant * dp = dpf->create_participant(123,

PARTICIPANT_QOS_DEFAULT, NULL, 0);

By default, the create_participant() call will initialize and enable the
DomainParticipant for communications.

7.3.3 Create a Publisher

The publisher is responsible for disseminating (publishing) data. It also acts
as a factory for creating DataWriters.

When creating a Publisher, you will be able to specify:

QoS for the Publisher Describes the QoS for the Publisher

Listeners Allows the application to attach listeners to the
publisher

Listener Status Mask Sets which listeners are active

To create a Publisher using the default Publisher QoS and no listeners, use
the following:

Publisher * pub = dp->create_publisher(PUBLISHER_QOS_DEFAULT,

NULL, 0);

By default, the create_publisher() call will initialize and enable the Publisher
for communications.

57

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

7.3.4 Register a Data Type

In order to publish (or subscribe to) data, the data type must be registered
in the CoreDX DDS middleware.

The most common mechanism to register a data type is to use the
TypeSupport generated from the IDL or XML. (Refer to the DDS Type
System Programmer’s Guide for additional information on registering data
types.) The example code uses a type name: StringMsg. To register this
type using the default type name (StringMsg) use the following:

StringMsgTypeSupport ts;

ts.register_type(dp, NULL);

The default type name is the ‘base’ type name, without any namespace
prefixes. You can supply an alternate type name by replacing the 2nd
argument with a string name.

7.3.5 Create a Topic

The Topic essentially links the publishers of data with the subscribers of
data. A Topic is identified by a unique topic name, and one data type.

When creating a Topic, you are able to specify:

Topic Name Must be unique in the Domain

Type Name Must already be registered in the Domain

QoS for the Topic Describes the QoS for the Topic

Listeners Allows the application to attach listeners to the
Topic

Listener Status Mask Sets which listeners are active

To create a Topic named “HelloTopic” with the “StringMsg” type, default
QoS, and no listeners use the following:

Topic topic = dp->create_topic(―HelloTopic‖, ―StringMsg‖,

TOPIC_QOS_DEFAULT, NULL, 0);

CoreDX DDS Programmer’s Guide

58

7.3.6 Create a DataWriter

The DataWriter is associated with exactly 1 Topic, and can write data of the
specific data type assigned to that Topic. The application typically uses a
type-specific DataWriter to publish data. [The alternative to a type-specific
DataWriter is a DynamicTypeDataWriter. More information may be found
in the Dynamic Types section of this Programmer’s Guide.]

When creating a DataWriter, you will be able to specify:

Topic The Topic to write “on”

QoS for the
DataWriter

Describes the QoS for the DataWriter

Listeners Allows the application to attach listeners to the
DataWriter

Listener Status Mask Sets which listeners are active

To create a DataWriter with the Topic created above, default QoS, and no
listeners, use the following:

DataWriter * dw = pub->create_datawriter(topic,

DATAWRITER_QOS_DEFAULT, NULL, 0);

For C++ only: This command creates a “generic” DataWriter (the publisher
does not know what type of data will be written). This generic DataWriter
will work, however, there is no type checking on the data passed to this
generic DataWriter on a write(). In order to have that type checking, use
the narrow() method to obtain a type-specific DataWriter:

StringMsgDataWriter * sdw = StringMsgDataWriter::narrow(

dw);

7.3.7 Write Data

All the necessary pieces are now in place to start publishing (writing) data.
There are two methods that can be used for writing:

ReturnCode_t retval = sdw->write(data, HANDLE_NIL);

And:

59

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

ReturnCode_t retval = sdw->write_w_timestamp(data,

HANDLE_NIL, time);

The write() method writes the data and uses the current time as the source
time stamp. The write_w_timestamp() method allows the application to
specify the source time stamp. The source time stamp is sent along with the
data, and is located in the SampleInfo on the subscribing end.

Both the write() and write_w_timestamp() methods take an instance
handle argument (the examples above used the empty handle:
HANDLE_NIL). Each piece of data written is associated in the CoreDX DDS
middleware by an instance handle. For more information on instance
handles, see the Instances and Sampleschapter. When the data contains a
key, calling write() with HANDLE_NIL results in the infrastructure looking up
the key data to find the associated instance handle. If you are doing
multiple writes with data contain the same key (or set of keys), you can
optimize the code by calling register() before write(). For example:

InstanceHandle_t handle = sdw->register_instance(data);

ReturnCode_t retval = sdw->write(data, handle);

ReturnCode_t retval = sdw->write(data, handle);

The write() API is asynchronous: the write() call returns once the CoreDX
DDS middleware has scheduled the Sample to be written, but the sample is
not necessarily written ‘on the wire’ at that time. The return value from
write indicates CoreDX DDS has successfully accepted this sample, or not.
Possible reasons for write() returning a non-success return code include:

1. There is no room in the DataWriter cache to hold the written sample, or
the written sample’s instance.

2. The provided instance_handle (if not HANDLE_NIL) does not refer to a
valid instance

7.4 Available QoS Settings

Every created DDS entity has an associated Quality of Service (QoS) that can
be specified when creating the entity, or later by calling the set_qos()
method on that entity. The QoS for each entity is a comprehensive set of
configuration policies that affect the behavior of that entity. The
middleware defines a default QoS for each entity, which was used in the
examples above.

Below is a table listing the available QoS for the publishing entities
(DomainParticipant, Publisher, Topic, and DataWriter). This table lists only

CoreDX DDS Programmer’s Guide

60

brief descriptions. A more complete list of QoS Policies and their
descriptions can be found in the Quality of Service Features chapter.

Table 7-1: QoS Policies for Publishing Entities

QoS Policy Description Available To

USER_DATA Data not used by the CoreDX DDS
middleware, the application can use
this data for its own purposes.

DomainParticipant,
DataWriter

TOPIC_DATA Data not used by the CoreDX DDS
middleware, the application can use
this data for its own purposes.

Topic

GROUP_DATA Data not used by the CoreDX DDS
middleware, the application can use
this data for its own purposes.

Publisher

DURABILITY Specifies if published data should be
saved for later-joining DataReaders to
receive.

Topic, DataWriter

DURABILITY_SERVICE Not Yet Implemented

Specifies configuration for the
disabilities: TRANSIENT and
PERSISTENT.

Topic, DataWriter

PRESENTATION Affects how data is presented to the
subscribing application. For example,
published data can be grouped
together such that the DataReaders
receive all coherent data together.

Publisher

DEADLINE Establishes an agreement that the
DataWriter will update each instance
of the data at least once every
specified time period. If the writing
application fails to meet this contract,
the deadline_missed status on the
DataWriter is triggered.

Topic, DataWriter

61

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

OWNERSHIP Specifies if multiple DataWriters are
allowed to write (or update) the same
instance of the data, and how these
modifications should be handled.

Topic, DataWriter

OWNERSHIP_STRENGTH Specifies the strength used to
arbitrate among multiple DataWriters
writing (or updating) the same
instance of the data.

DataWriter

LIVELINESS Indicates a commitment by the
DataWriter to signal it’s liveliness to
DataReaders in the specified interval.
This may mean the DataWriter
updates its samples, or simply asserts
it is still alive. If the DataWriter (or
application) fails to meet this liveliness
contract, the LIVELINESS_LOST status
is triggered on the DataWriter.

Topic, DataWriter

PARTITION A logical partition among Topics visible
to Publishers and Subscribers. A
publisher will only communicate with
a subscriber if their Partitions match
(wildcards allowed).

Publisher

RELIABILITY Indicates the level of reliability offered
by the DataWriter.

Topic, DataWriter

DESTINATION_ORDER Specifies the order in which changes
to an instance will be published.

Topic, DataWriter

HISTORY Specifies if the publishing middleware
should keep any (or all) updates to an
instance on behalf of existing
DataReaders.

Topic, DataWriter

RESOURCE_LIMITS Specifies the resources the
middleware can consume in order to
meet the requested QoS.

Topic, DataWriter

CoreDX DDS Programmer’s Guide

62

RTPS_Writer Configures CoreDX DDS extensions to
DataWriter behavior

DataWriter

DISCOVERY Configure CoreDX DDS extentions for
transport and discovery options

DomainParticipant

PEER_PARTICPANT Configure static peers to communicate
with

DomainParticipant

THREAD_MODEL Configuring threading options (single
threaded / multithreaded)

DomainParticipant

ENTITY_FACTORY Specifies if a factory should
automatically enable created entities.
If the factory does not automatically
enable those entities, the application
must specifically enable them before
they can be used for publishing or
writing data.

DomainParticipantF
actory,
DomainParticipant,
Publisher

7.5 Available Listeners

Listeners are one mechanism allowing the application to be made aware of
events and changes in the CoreDX DDS middleware communication status.
A listener has a number of methods defined, one for each applicable
communication status. The application can define one or more listener
methods and attach them to an appropriate DDS entity when the entity is
created, or later by using the set_listener() method on the entity.

The table below lists the listeners that can be attached to publishing
Entities. A more complete list and description of listeners can be found in
theCommunication Statuschapter.

Table 7-2: Listeners for Publishing Entities

Listener Listener Methods Description

DataWriterListener on_offered_deadline_missed() A deadline offered through the
DEADLINE QoS setting was

63

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

missed.

 on_offered_incompatible_qos() A DataReader was discovered
for the same Topic as this
DataWriter, but the QoS
requested by that DataReader
was incompatible with this
DataWriter’s offered QoS.

 on_liveliness_lost() The liveliness specified in the
LIVELINESS QoS was not
respected, and DataReaders
will consider this DataWriter no
longer active.

 on_publication_matched() A DataReader has been found
that matches the Topic and Qos
of this DataWriter (or a
DataReader that was previously
matched is no longer matched.

PublisherListener (none) (PublisherListener inherits
methods from the
DataWriterListener)

TopicListener on_inconsistent_topic() Another, different, Topic exists
with the same name as this
Topic.

DomainParticipantL
istener

(none) (DomainParticipantListener
inherits methods from the
DataWriterListener,
PublisherListener, and
TopicListener)

CoreDX DDS Programmer’s Guide

64

Chapter 8 Developing a Subscribing Application

This chapter describes the development process for DDS subscribing
applications.

8.1 Summary of Developing a Subscribing Application

The steps for creating a subscribing application are as follows:

1. Create or obtain the data definitions for the DDS interfaces

2. Use the CoreDX DDS data typecompiler to compile the data types.
The type-specific support and DataReader are created as a result of
compiling the data types.

3. Write the subscribing application

4. Compile the subscribing application, linking with the generated
code from step 2 and the applicable CoreDX DDS libraries.

8.2 The Data

DDS enabled applications are inherently data-centric. In order for these
data-centric applications to perform efficiently, it is necessary to have a
well-considered data model, which is usually implemented in either IDL or
XML. [Data types may also be created dynamically at run-time, or
discovered via DDS Discovery.]

For more information on the data types supported by the CoreDX DDS data
type compiler, see Application Data Types.

8.3 The Subscribing Application

Note: Names may be different between the different language bindings.
This is because some language bindings use a DDS namespace, and the C
language binding augments names to include the namespace as a prefix.
For example, in C++ we might reference
DDS::DomainParticipantFactory::create_participant(), whereas in C, this is
the syntax: DDS_DomainParticipantFactory_create_participant(). For
purposes of illustration, the examples in this section are written in C++, and
assume that the DDS namespace is in use.

65

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

A subscribing application must include the generated Type, TypeSupport,
and DataReader header files.

8.3.1 Initialize the DomainParticipantFactory

This is the first step for any application communicating using DDS, and
initializes the CoreDX DDS middleware for use.

In the ‘C’ language binding, there is initialization the
DomainParticipantFactory.

In the ‘C++’, ‘C#’, and Java language bindings, the application must get an
instance of the DomainParticipantFactory in order to use it (for example: to
set a license or create a DomainParticipant):

DomainParticipantFactory * dpf =

DomainParticipantFactory::get_instance();

8.3.2 Create a DomainParticipant

The DomainParticipant represents the participation of an application in a
virtual network, linking all applications that share the same domain ID.
Several independent DDS “networks” (in DDS terms, these are different
Domains) can coexist in the same physical network without interfering (or
even being aware) of each other.

In addition, the DomainParticipant acts as a factory for creating Topics and
Subscribers (and Publishers), or otherwise organize the application’s
communication events.

 When creating a DomainParticipant, you will be able to specify:

Domain ID The unique identifier for the domain this application
will be publishing in

QoS for the
DomainParticipant

Describes the QoS for the Domain Participant

Listener Allows the application to attach listeners to the
domain participant.

Listener status mask Sets which listeners are active

CoreDX DDS Programmer’s Guide

66

To create a DomainParticipant in the 123 domain, using the default
DomainParticipant QoS, and no listeners use the following:

DomainParticipant * dp = dpf->create_participant(123,

PARTICIPANT_QOS_DEFAULT, NULL, 0);

By default, the create_publisher() call will initialize and enable the Publisher
for communications.

8.3.3 Create a Subscriber

The subscriber is responsible for receiving data. It also acts as a factory for
creating DataReaders. When creating a Subscriber, you are able to specify:

QoS for the
Subscriber

Describes the QoS for the Subscriber

Listeners Allows the application to attach listeners to the
subscriber

Listener Status Mask Sets which listeners are active

To create a Subscriber using the default Publisher QoS and no listeners, use
the following:

Subscriber * sub = dp->create_subscriber(

SUBSCRIBER_QOS_DEFAULT, NULL, 0);

8.3.4 Register a Data Type

In order to subscribe to data, the data type must be registered in the
CoreDX DDS middleware.

To register a data type, use the TypeSupport generated from the CoreDX
DDS data type compiler. The example code uses a type name: StringMsg.
To register this type using the default type name (StringMsg) use the
following:

StringMsgTypeSupport ts;

ts.register_type(dp, NULL);

You can supply an alternate type name by replacing the 2nd argument with a
string name.

67

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

8.3.5 Create a Topic

The Topic essentially links the publishers of data with the subscribers of
data. A Topic is identified by a unique topic name, and a type.

When creating a Topic, you will be able to specify:

Topic Name Must be unique in the Domain

Type Name Must already be registered in the Domain

QoS for the Topic Describes the QoS for the Topic

Listeners Allows the application to attach listeners to the
Topic

Listener Status Mask Sets which listeners are active

To create a Topic named “HelloTopic” with the “StringMsg” type, default
QoS, and no listeners use the following:

Topic topic = dp->create_topic(―HelloTopic‖,

―StringMsg‖, TOPIC_QOS_DEFAULT, NULL, 0);

8.3.6 Create a DataReader

The DataReader can read data of a specific type. The application uses a
type-specific DataReader to read data.When creating a DataReader, you will
be able to specify:

Topic The Topic to read “on”

QoS for the
DataReader

Describes the QoS for the DataReader

Listeners Allows the application to attach listeners to the
DataReader

Listener Status Mask Sets which listeners are active

CoreDX DDS Programmer’s Guide

68

To create a DataReader with the Topic created above, default QoS, and no
listeners, use the following:

DataReader * dr = sub->create_datareader(topic,

DATAREADER_QOS_DEFAULT, NULL, 0);

For C++ applications: An application should cast the DataReader to a type
specific DataReader to use it in a type-safe manner. The narrow() operation
can be used to obtain the type specific DataReader. For example:

StringMsgDataReader * sdr =

 StringMsgDataReader::narrow(dr);

8.3.7 Read (or Take) Data

Ultimately, the application will call one of theread() or take() methods on
the DataReader to access data. These operations are non-blocking, and
deliver the data that has been received and is currently available to the
application. The read() and take() operations return an ordered collection
of data samples, and their associated sample information, that match the
QoS policies set on the Subscriber and DataReader and the parameters
passed to read() and take().

The read() and take() operations have a similar API signature, and a set of
variants that provide the application with additional control over the
returned data. The basic read() operation provides the application with
access to data managed by the DataReader. After the read() operation, the
data is still managed by the DataReader, and is available for access by
subsequent read() operations. The take() operation, also provides access to
data managed by the DataReader. It differs from read() because data
samples accessed by the take() operation are removed from the
DataReader, and are not available to subsequent read() or take()
operations. As an analogy, read() peeks at the data available in the
DataReader while take() actually removes the data from the DataReader.

The basic read() and take() operations both allow the application to specify
a filter for view, sample, and instance states. This allows the application to
request only those samples that have the requested state. For more
information on these states see the Sample Status Information (SampleInfo)
section.

The variations of read() and take() provided by the API are as follows:

69

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

method Behavior

read_w_condition()

take_w_condition()

Applies a ReadCondition filter to the samples
before returning. The ReadCondition can be
a QueryCondition (specialization) which
includes an SQL like select statement. This
provides for complex filtering of data
samples based on status and data content.

read_next_sample()

take_next_sample()

This accesses a single sample in order as
dictated by the QoS settings.

read_instance()

take_instance()

This accesses the data samples of a particular
instance specified as an argument.

read_next_instance()

take_next_instance()

This provides a mechanism to iteratively
access the data samples of all instances. By
providing a NIL HANDLE to the first
invocation, and then providing the instance
handle of the returned samples to
subsequent invocations, it is possible to
iterate through all instances contained in the
DataReader.

read_next_instance_w_condition()

take_next_instance_w_condition()

This combines filtering capabilities with
instance iteration.

8.3.8 Notification Options (Determine When Data is Available)

CoreDX DDS provides a number of status and notifications that are available
for the application to learn about events within the CoreDX DDS
middleware. An example is the event that data has been received by the
DataReader and is available for the application to read (or take). These
notification options may also be used to notify the application of other
events that may happen within the CoreDX DDS middleware.

CoreDX DDS Programmer’s Guide

70

8.3.8.1 Using Listeners

Listeners provide asynchronous notification when data is available. There
are two listener operations that indicate data is available: the
on_data_available() method in the DataReaderListener and the
on_data_on_readers() method in the SubscriberListener. The subscribing
application attaches a listener to the DataReader or Subscriber, and that
listener is invoked when data is available.

Additional information on listeners and example listener code can be found
in the Listenerssection of this manual.

8.3.8.2 Using Conditions

Conditions, when combined with WaitSets provide synchronous notification
when data is available by allowing the subscribing application to block until
data is available. There are two types of conditions the subscribing
application can use to be notified of available data. The first is a
StatusCondition. The DataReader and Subscriber both have a
StatusCondition. The DataReader’s StatusCondition will trigger when the
DATA_AVAILABLE_STATUS on the DataReader changes. The Subscriber’s
StatusCondition will trigger when the subscriber’s
DATA_ON_READERS_STATUS changes. The second type of condition is a
ReadCondition, which is triggered when data is available on the DataReader.
The ReadCondition allows the application to specify additional criteria that
must be met before the Condition is triggered, including instance state,
sample state, and view state.

Additional information on Conditions and WaitSets, along with example
code can be found in the Conditions and WaitSets section of this manual.

8.3.8.3 Using Polling

The application can choose to poll for data, rather than blocking or using
callbacks. When polling for data, the application calls DataReader::read() or
take() operation in a loop. If there is data available, these methods return
DDS::RETCODE_OK, otherwise they return DDS::RETCODE_NO_DATA.

8.4 Sample Status Information (SampleInfo)

Calls to any of the read() or take() variants described above return one ore
more samples and corresponding SampleInfo structures. The SampleInfo
structure contains metadata about the received sample and includes the
following information:

71

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

8.4.1 sample_state

The sample state is the state of the data sample. Valid states are: READ and
NOT_READ.

The sample state is READ if this DataReader has read this sample previously,
otherwise the state is NOT_READ.

8.4.2 view_state

The view state indicates this DataReader’s view of the data instance. Valid
states are: NEW and NOT_NEW.

The view state is NEW if this DataReader has never read a sample from this
instance, otherwise the state is NOT_NEW. The view state can also be NEW
if this is the first sample received since the instance was disposed.

8.4.3 instance_state

The instance state is the state of the instance. Valid states are: ALIVE,
NOT_ALIVE_DISPOSED, and NOT_ALIVE_NO_WRITERS.

The instance state is ALIVE if there is at least one DataWriter actively writing
samples on this instance. The instance state is NOT_ALIVE_DISPOSED if the
instance was explicitly disposed by a DataWriter. The instance state is
NOT_ALIVE_NO_WRITERS if there are no DataWriters actively writing this
instance.

8.4.4 source_timestamp

The source timestamp is the timestamp provided by the DataWriter at the
time the sample was produced.

8.4.5 instance_handle

The instance handle is a unique identifier for this sample’s instance.

8.4.6 publication_handle

The publication handle is a unique identifier for the DataWriter who wrote
this sample.

CoreDX DDS Programmer’s Guide

72

8.4.7 disposed_generation_count

The disposed generation count is a count of the number of times the
instance has come alive after being disposed. In other words, any time the
instance state changes from NOT_ALIVE_DISPOSED to ALIVE.

This countcan be used to determine the number of times an instance has
been disposed. Initially, it is 0.

8.4.8 no_writers_generation_count

The no writers generation count is a count of the number of times a
DataWriter has started writing data on the instance after being declared
NOT_ALIVE_NO_WRITERS. In other words, any time the instance state
changes from NOT_ALIVE_NO_WRITERS to ALIVE.

This count can be used to determine the number of times an instance has
not been alive due to no active readers. Initially, it is 0.

8.4.9 sample_rank

The sample rank is the number of samples in this instance that follow this
one in the current read (or take) collection.

The sample rank can be used to determine the ‘sample age’ of the current
sample, relative to the number samples for the instance in the returned
sample set.

8.4.10 generation_rank

The generation rank is the number of times this instance has transitioned
from not-alive to alive in the time between the reception of this sample and
the latest sample for this instance in the current read (or take) collection.

The generation rank can be used to determine the ‘generation age’ of the
current sample, relative to the number of samples for this instances in the
returned sample set.

8.4.11 valid_data

The valid data flag indicates the sample data associated with this
SampleInfo is valid. Valid values are zero (FALSE) and non-zero (TRUE).

73

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

The valid data flag is set to true when a data sample is received. The valid
data flag is set to false when an unregister or dispose command is received.
(There is still a sample returned, however, only the key fields, if any, will be
valid in this sample.)

8.5 Additional Subscriber / DataReader Features

8.5.1 Filtering Data

There are two basic options for filtering received data.

1. Filter data that is received by the DataReader (filtered data is
never available to the application).

2. Filter data as it is read by the application (filtered data is still
available in the DataReader for future reads or takes by the
application).

A ContentFilteredTopic or the Time Based Filter QoS policy is used to
achieve the first option. A DataReader created on a ContentFilteredTopic
will not store the filtered data, and so it is never available to the application.
Refer to theContent Filtered Topicssection for additional information on
ContentFilteredTopics. Similarly, data filtered by a configured Time Based
Filter QoS policy is not added to the DataReader cache, and so it is never
available to the application.

The second option may be achieved by using the read_w_condition() (or
take_w_condition()) API, or by using a WaitSet with a read condition
attached. Both the read_w_condition() / take_w_condition() API and
WaitSets allow filtering using Read Conditions or Query Conditions.

Read Conditions allow the application to filter by the state and view of the
data in the DataReader cache. Read Condition filters parameters include:

 Sample State: has the data sample been ‘read’ or not

 View State: is the data sample newly received since the application
last accessed the data cache (via a read() or take() operation)

 Instance State: is the instance alive, disposed, or unregistered (see
xyz for additional information on Instances).

Query Conditionsallow the application to filter on the data contents of each
sample. These conditions are provided as an SQL-like query string, and only
data that matches the specified query is returned to the application. Refer

CoreDX DDS Programmer’s Guide

74

to the Content Filtered Topics section for additional information on the
query syntax.

8.5.2 Wait for Historical Data

DataReaders with a Durability QoS policy configured to Transient Local,
Transient, or Persistent mayreceive historical data published before this
DataReader was enabled. The DataReader provides an API that will block
the application until all available historical data has been received:

DataReader::wait_for_historical_data(Duration_t

max_wait)

When this method is invoked, the application will block until all historical
data (all previously published data samples) have been received and are
available for the application to read or until max_wait has expired,
whichever occurs first.

This method is not applicable when the DataReader’s Durability QoS policy
is configured to Volitile; in this case, wait_for_historical_data() will return
immediately.

8.6 QoS Policies

Every created DDS entity has an associated Quality of Service (QoS) that can
be specified when creating the entity, or later by calling the set_qos()
method on that entity. The QoS for each entity is a comprehensive set of
configuration policies that affect the behavior of that entity. The
middleware defines a default QoS for each entity, which was used in the
examples above.

Below is a table listing the available QoS for the subscribing entities
(DomainParticipant, Subscriber, Topic, and DataReader). This table lists only
brief descriptions. A more complete list of QoS Policies and their
descriptions can be found in the Quality of Service Features chapter.

Table 8-1: QoS Policies for Subscribing Entities

QoS Policy Description Available To

USER_DATA Data not used by the CoreDX DDS
middleware, the application can use this
data for its own purposes.

DomainParticipant,
DataReader

75

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

TOPIC_DATA Data not used by the CoreDX DDS
middleware, the application can use this
data for its own purposes.

Topic

GROUP_DATA Data not used by the CoreDX DDS
middleware, the application can use this
data for its own purposes.

Subscriber

DURABILITY Specifies if the DataReader would like to
receive older data that was published
before the DataReader came online (in
other words, the history data).

Topic, DataReader

DURABILITY_SERVICE Not Yet Implemented

Specifies configuration for the disabilities:
TRANSIENT and PERSISTENT.

Topic, DataReader

PRESENTATION Affects how data is presented to the
subscribing application. For example,
published data can be grouped together
such that the DataReaders receive all
coherent data together.

Subscriber

DEADLINE Establishes an expectation that the
publisher of data will updated the data at
least once every specified time period.

Topic, DataReader

OWNERSHIP Specifies if multiple DataWriters are
allowed to write (or update) the same
instance of the data, and how these
modifications should be handled.

Topic, DataReader

LIVELINESS Indicates an expectation of the
DataReader that the DataWriter will
signal it’s liveliness in the specified
interval.

Topic, DataReader

CoreDX DDS Programmer’s Guide

76

PARTITION A logical partition among Topics visible to
Publishers and Subscribers. A publisher
will only communicate with a subscriber
if their Partitions match.

Subscriber

RELIABILITY Indicates the level of reliability expected
of all matched DataWriters.

Topic, DataReader

DESTINATION_ORDER Specifies the order in which changes to
an instance will be ordered by the
Subscriber.

Topic, DataReader

HISTORY Specifies if the subscribing middleware
should keep any (or all) updates to an
instance (history).

Topic, DataReader

RESOURCE_LIMITS Specifies the resources the middleware
can consume in order to meet the
requested QoS.

Topic, DataReader

RTPS_Reader Configures CoreDX DDS extensions to
DataReader behavior

DataReader

DISCOVERY Configure CoreDX DDS extentions for
transport and discovery options

DomainParticipant

PEER_PARTICPANT Configure static peers to communicate
with

DomainParticipant

THREAD_MODEL Configuring threading options (single
threaded / multithreaded)

DomainParticipant

ENTITY_FACTORY Specifies if a factory should automatically
enable created entities. If the factory
does not automatically enable those
entities, the application must specifically
enable them before they can be used for
receiving data.

DomainParticipantF
actory,
DomainParticipant,
Subscriber

77

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

8.7 Available Listeners

Listeners are one mechanism allowing the application to be made aware of
events and changes in the CoreDX DDS middleware communication status.
We illustrated an example of one kind of listener above, the
DataReaderListener, used for receiving data. There are additional listeners
available to a subscribing application. The application can define one or
more listener methods and attach them to an appropriate DDS entity when
the entity is created, or later by using the set_listener() method on the
entity.

The table below lists the listeners that can be attached to a subscribing
application. A more complete list and description of listeners can be found
in theCommunication Status chapter.

Table 8-2: Listeners for Subscribing Entities

Listener Listener Methods Description

DataReaderListene
r

on_requested_deadline_missed() The deadline this DataReader was
expecting through its QoS DEADLINE
was missed.

 on_requested_incompatible_qos() A DataWriter has been discovered
that has a QoS configuration
incompatible with this DataReader’s
QoS

 on_liveliness_changed() One or more of the DataWriters this
DataReader was receiving samples
data from has changed liveliness
(either became ACTIVE or INACTIVE)

 on_subscription_match() A DataWriter has been discovered
that matches the Topic and has a
compatible QoS configuration to
this DataReader

CoreDX DDS Programmer’s Guide

78

Listener Listener Methods Description

 on_sample_rejected() A received sample has been rejected by
this DataReader because a
RESOURCE_LIMITS QoS setting has
been exceeded. The sample is not
available to the application.

 on_data_available() New information (data sample(s) or
sample information) is available

 on_sample_lost() A sample has been lost (not received by
this DataReader). This sample is not
available to the application.

SubscriberListener on_data_on_readers() Data has been received and is available
on one or more DataReaders attached
to this Subscriber.

(SubscriberListener also inherits
methods from the DataReaderListener)

TopicListener on_inconsistent_topic() Another, different, Topic exists with the
same name as this Topic.

DomainParticipant
Listener

(none) (DomainParticipantListener inherits
methods from the DataReaderListener,
SubscriberListener and the
TopicListener)

79

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

CoreDX DDS Programmer’s Guide

80

Chapter 9 Topics

9.1 Overview

Topicsconnect publications and subscriptions. Publications must be known
in such a way that subscriptions can refer to them unambiguously. A Topicis
meant to fulfill that purpose: it associates a name, a data-type, and QoS
related to the data itself.

Each topic corresponds to one data type. However, several topics may
refer to the same data type.

Topics have a Quality of Service (QoS) that conceptually describes the data
written to that topic. The topic QoS can be specified when creating the
topic, or later by calling the set_qos() operation on the topic. The QoS
defined for the topic is not used by CoreDX DDS, but may be used by the
application as a hint for the QoS of the corresponding DataReaders and
DataWriters. Additional information on QoS policies can be found in the
Quality of Service Features chapter.

There are several variations of a topic. The base class for all topics is a
TopicDescription. The TopicDescription contains the topic name and data-
type name. There are three (3) variations of a TopicDescription. They are
listed in Table 9-1.

Table 9-1: Topic Variants

Topic Variants Description

Topic The basic form of a TopicDescription, it contains a
description of the data to be published and subscribed to,
including QoS and Listeners.

ContentFilteredTopic This topic allows for content-based subscriptions, that is, a
subscription that receives a subset of the data published
based on a SQL-like query condition.

81

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

MultiTopic This topic allows for combining and filtering data from
several topics.

CoreDX DDS currently does not support MultiTopics.

Topics are created using one of the create_topic() operation variations
provided from the DomainParticipant.

In general, a publishing application will create a Topic, and associate each
DataWriter to exactly one Topic. A subscribing application will create a
Topic and if using a content filter, create a ContentFilteredTopic based on
that Topic, and associate each DataReader to exactly one TopicDescription
or ContentFilteredTopicDescription.

9.2 Built-In Topics

The CoreDX DDS infrastructure manages a set of built-in topics. These
topics are created when a DomainParticipant is initialized, and keep track of
discovery information about other DDS participants, Topics, DataReaders,
and DataWriters. This information is necessary for the DDS discovery to
work properly, and may also be useful to applications that want to react to
this discovery information.

Table 9-2lists the built-in topics and their associated data types.

Table 9-2: Built-in Topics

Built-in Topic
Name

Data Type Name Description

DCPSParticipant DDS::ParticipantBuiltinTopicData Each sample is a description of a DDS
participant that has been discovered by
this DomainParticipant

DCPSTopic DDS::TopicBuiltinTopicData Not supported by CoreDX DDS. The
presence of a Topic is implied by the
presence of a DataReader or
DataWriter on the Topic.

DCPSPublication DDS::PublicationBuiltinTopicData Each samples is a description of a
DataWriter discovered by this

CoreDX DDS Programmer’s Guide

82

DomainParticipant

DCPSSubscription DDS::SubscriptionBuiltinTopicData Each sample is a description of a
DataReader discovered by this
DomainParticipant

In general, the built-in data types hold information about the discovered
entity’s QoS configuration, along with other useful information. For a
detailed description of these built-in data types, refer to the dds_builtin.h or
dds_builtin.hh header files in the
COREDX_TOP/target/COREDX_TARGET/include/dds directory.

Each built-in topic has a type-specific DataReader associated with it
(DCPSParticipantDataReader, etc.). The application can use these
DataReaders to access the data and statuses from the built-in topics in the
same way any user defined DataReader would do this.

To get access to these built-in DataReaders, the application can call

DomainParticipant::get_builtin_subscriber()

This Subscriber can be used to access specific built-in data readers by calling

Subscriber::lookup_datareader(topic_name)

and using the appropriate topic name from

Table 9-2. For example:

Subscriber::lookup_datareader(―DCPSPublication

‖)

Once the application has gotten the desired built-in DataReader, it can use
any of the normal data access mechanisms: asynchronous notification via a
listener, direct polling via read(), or blocking with a WaitSet.

The built-in topics use data types specified in the DDS standard for
communicating discovery data. The following tables illustrate the data type
of each of the built-in topics.

83

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Table 9-3: Participant Built-in Data Type

ParticipantBuiltinTopicData

struct ParticipantBuiltinTopicData

{

 DDS_KEY BuiltinTopicKey_t key;

 UserDataQosPolicy user_data;

};

Table 9-4: Topic Built-in Data Type

TopicBuiltinTopicData

struct TopicBuiltinTopicData

{

 DDS_KEY BuiltinTopicKey_t key;

 string name;

 string type_name;

 DurabilityQosPolicy durability;

 DurabilityServiceQosPolicy durability_service;

 DeadlineQosPolicy deadline;

 LatencyBudgetQosPolicy latency_budget;

 LivelinessQosPolicy liveliness;

 ReliabilityQosPolicy reliability;

 TransportPriorityQosPolicy transport_priority;

 LifespanQosPolicy lifespan;

 DestinationOrderQosPolicy destination_order;

 HistoryQosPolicy history;

 ResourceLimitsQosPolicy resource_limits;

 OwnershipQosPolicy ownership;

 TopicDataQosPolicy topic_data;

};

CoreDX DDS Programmer’s Guide

84

Table 9-5: Publication Built-in Data Type

PublicationBuiltinTopicData

struct PublicationBuiltinTopicData

{

 DDS_KEY BuiltinTopicKey_t key;

 BuiltinTopicKey_t participant_key;

 string topic_name;

 string type_name;

 DurabilityQosPolicy durability;

 DurabilityServiceQosPolicy durability_service;

 DeadlineQosPolicy deadline;

 LatencyBudgetQosPolicy latency_budget;

 LivelinessQosPolicy liveliness;

 ReliabilityQosPolicy reliability;

 LifespanQosPolicy lifespan;

 UserDataQosPolicy user_data;

 OwnershipQosPolicy ownership;

 OwnershipStrengthQosPolicy ownership_strength;

 DestinationOrderQosPolicy destination_order;

 PresentationQosPolicy presentation;

 PartitionQosPolicy partition;

 TopicDataQosPolicy topic_data;

 GroupDataQosPolicy group_data;

};

Table 9-6: Subscription Built-in Data Type

SubscriptionBuiltinTopicData

struct SubscriptionBuiltinTopicData

{

 DDS_KEY BuiltinTopicKey_t key;

 BuiltinTopicKey_t participant_key;

 string topic_name;

 string type_name;

 DurabilityQosPolicy durability;

 DeadlineQosPolicy deadline;

 LatencyBudgetQosPolicy latency_budget;

85

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

 LivelinessQosPolicy liveliness;

 ReliabilityQosPolicy reliability;

 OwnershipQosPolicy ownership;

 DestinationOrderQosPolicy destination_order;

 UserDataQosPolicy user_data;

 TimeBasedFilterQosPolicy time_based_filter;

 PresentationQosPolicy presentation;

 PartitionQosPolicy partition;

 TopicDataQosPolicy topic_data;

 GroupDataQosPolicy group_data;

};

9.3 Content Filtered Topics

A ContentFilteredTopic is a specialization of TopicDescription that allows the
subscribing application to describe a subscription where it will only see a
subset of the data published, based on a defined content filter. The filter is
an SQL like statement. The ContentFilteredTopic is associated with another
known Topic and applies a filter to the data available on that related topic.

ContentFilteredTopics are created by a DomainParticipant, just like normal
Topics.

DomainParticipant::create_contentfilteredtopic()

This method call has additional parameters to specify which topic the
ContentFilteredTopic is associated with, the SQL query expression, and
parameters (if any) for use in evaluating the filter expression.

Table 9-7: create_contentfilteredtopic() parameters

Parameter Description

Topic Related topic. The ContentFilteredTopic presents a
filtered subset of data available on the related topic.

filter_expression SQL like condition expression

filter_parameters String sequence of parameters used in the
filter_expression.

CoreDX DDS Programmer’s Guide

86

Thefilter_expression must be a valid SQL WHERE clause (without the
WHERE keyword). For example “x<=4”. The filter expression refers to
structure members in the application defined data type associated with the
related Topic. For embedded structures, the naming convention uses a dot
(‘.’) to separate field names. For example, “time.sec > 10”.Table 9-8lists all
the operators available when constructing the condition.

Table 9-8: Valid Condition Operators for Content Filters

Operator Description

= Equals

<> Not equals

>= Greater than or equal

> Greater than

<= Less than or equal

< Less than

NOT, not Not operator

() Parenthesis are used for nesting conditions

AND, and And operator

OR, or Or operator

IN, in In operator for matching a value to something in a
list

BETWEEN, between For future use: the between operator is not yet
supported by CoreDX DDS.

LIKE, like For future use: the like operator is not yet supported
by CoreDX DDS.

87

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

The filter expression can also contain references to parameters, present in
the filter_parameters argument. Parameter references take the form
“%<number>”. The number is an index into the filter_parameters
sequence, and starts at zero. For example “%2” refers to the third
parameter in the filter_parameters sequence.

Once created ContentFilteredTopics can be used by a DataReader just like a
normal Topic. The filter expression is static, and cannot be changed after
the ContentFilteredTopic is created; however, filter parameters can be
changed on the fly with a call to

 ContentFilteredTopic::set_expression_parameters()

Content Filter expressions can contain references to basic data types. For
example, data members of type int, short, long, and string are all valid field
types for a filter expression; but,sequences, arrays, or unions are not.

9.3.1 Content Filter Example

The full code for a content filter example can be found in the examples
directory of the CoreDX DDS release.

Table 9-9: Creating a ContentFilteredTopic

Creating a ContentFilteredTopic (C language)

DDS_DomainParticipant dp;

DDS_Subscriber sub;

DDS_Topic top;

DDS_ContentFilteredTopic cftop;

DDS_TopicDescription td;

DDS_DataReader dr;

DDS_StringSeq cf_params;

dp = DDS_DomainParticipantFactory_create_participant(1,

 DDS_PARTICIPANT_QOS_DEFAULT, NULL, 0);

sub = DDS_DomainParticipant_create_subscriber(dp,

 DDS_SUBSCRIBER_QOS_DEFAULT, NULL, 0);

 MyTypeTypeSupport_register_type(dp, “topic_type”);

top = DDS_DomainParticipant_create_topic(dp, “topic_name”,

 “topic_type”, DDS_TOPIC_QOS_DEFAULT, NULL, 0);

 /* BUILD A CONTENT_FILTERED TOPIC */

cftop = DDS_DomainParticipant_create_contentfilteredtopic(dp,

 “cf_topic_name”, top, "x<%0", NULL);

CoreDX DDS Programmer’s Guide

88

 /* parameters can be specified/modified after creation */

 INIT_SEQ(cf_params);

 seq_set_size(&cf_params, 1);

 seq_set_length(&cf_params, 1);

 cf_params._buffer[0] = "5";

DDS_ContentFilteredTopic_set_expression_parameters(cftop,

 &cf_params);

td = DDS_Topic_TopicDescription((DDS_Topic)cftop);

dr = DDS_Subscriber_create_datareader(sub, td, &dr_qos,

 NULL, 0);

 if (!dr)

 printf("FAILED to create DR!\n");

9.3.2 Configuring Content Filters

When a DataReader uses a content filter to filter the received data, the filter
expression is communicated to any matching DataWriter(s). This allows
CoreDX DDS to filter data either at the DataWriter or the DataReader.

The DataReader’s content filter is always enabled. This ensures the
specified data is always filtered, even when the DataReader is matched with
a DataWriter that does not support writer-side-filtering (for example, this
may happen when interoperating with another DDS implementation).

DataWriter content filtering is configurable by the DataWriter QoS policy:
RTPSWriterQosPolicy.apply_filters (true or false value).

DataWriter filtering is enabled by default. This means the DataWriter will
write data to a DataReader only when it passes the DataReader’s content
filter (or if the DataReader does not have a content filter configured). This
configuration can reduce the ‘work’ performed by the DataReader to apply
the filter, but also means the DataWriter must unicast all samples that are
filtered by at least 1 matched DataReader.

When the DataWriter is configured to NOT apply filters, the DataWriter will
always multicast written data samples, allowing the DataReader to apply
the filter.

9.3.3 Compiling an application with Content Filters

CoreDX DDS provides an alternate library that contains the Content Filter
capability. This allows the basic CoreDX DDS library to stay extremely small.

89

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

To compile an application that uses content filters, change the library line in
your Makefile, replacing libdds with libdds_cf. For the C++ language
binding, you will also need to replace libdds_cpp with libdds_cpp_cf.

The Java and C# language binding contain all CoreDX DDS functionality in
one library, including the content filter API and functionality.

9.4 Multi Topics

A MultiTopic is a specialization of TopicDescription that allows the
application to describe a subscription that combines, filters, and orders data
from multiple Topics. This is similar to the JOIN statement in SQL and
Relational Database Systems.

CoreDX DDS currently does not support multi topics.

CoreDX DDS Programmer’s Guide

90

Chapter 10 Instances and Samples

Data is the core of any communications middleware, and it is especially
important to a data-centric, publish-subscribe middleware like CoreDX DDS.
This chapter describes how the CoreDX DDS middleware handles and
classifies the data, and how the data is packaged and communicated
between the application and the CoreDX DDS middleware.

10.1 Overview

Each Topic is attached to a DDS data type. Only data of that type may be
published on the Topic. The DDS data type is always a structure, which can
be made up of virtually any user defined type. The following is an example
of a DDS data type.

struct HelloMessage {

 long time_sent;

 long sender_id;

 string sender_name;

 string msg;

 sequence<string> msg_history;

}

The type name for the above DDS data type is “HelloMessage”.

Additional information on the generating DDS data types can be found in
the Application Data Types chapter.

The CoreDX DDS middleware classifies data into samplesand instances. A
sample is data of the appropriate DDS data type that has been published to
a DDS Topic. The following is a possible sample of the HelloMessage data
type:

123456789

42

―Bob The Builder‖

―Hello out there!‖

<empty sequence>

91

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

The application developer, when creating a DDS data type, can specify one
or more attributes of the DDS data type as a key. The CoreDX DDS
middleware uses those key attributes to organize the published data. Going
back to the HelloMessage example above, an application developer might
specify the “sender_id” field as the key for the HelloMessage data type.

A publishing application might write the following four (4) samples:

If the Data Type defines the “sender_id” field as the key for the
HelloMessage data type, then in the 4 samples published, there are 3
unique keys. The CoreDX DDS middleware classifies all samples with the
same key value to be one (1) instance. In this example, 3 instances have
been published, with the following keys: 42, 45, and 12. This is depicted in
Table 10-1.

123456789

42

―Bob The Builder‖

―Hello out there!‖

<empty sequence>

223456789

45

―Wendy‖

―Busy day today‖

<empty sequence>

323456789

42

―Bob The Builder‖

―Can We Build It?‖

<empty sequence>

423456789

12

―Scoop‖

―Yes we can!‖

<empty sequence>

CoreDX DDS Programmer’s Guide

92

Table 10-1: Instance Example

Instance 1, Key=42

2 samples

Instance 2, Key=45

1 sample

Instance3, Key=12

1 sample

123456789

42

―Bob The Builder‖

―Hello out there!‖

<empty sequence>

223456789

45

―Wendy‖

―Busy day today‖

<empty sequence>

423456789

12

―Scoop‖

―Yes we can!‖

<empty sequence>

323456789

42

―Bob The Builder‖

―Can We Build It?‖

<empty sequence>

The CoreDX DDS middleware stores and manages data samples(an
individual structure provided to write() and returned from read())and
instances(a collection of zero or more samples with the same key value).

10.2 Publishing Data

On the publishing side of DDS communications, samples represent data that
is sent to DataReaders. Samples are created for every write(), unregister(),
and dispose() call made by the application. Each sample written is
associated with a particular instance. In general, samples and instances are
stored by the DataWriter until they are delivered to all appropriate
DataReaders, at which point the samples and instances may be removed.
The specific rules for maintaining samples in the DataWriter are different
from the rules for managing instances. For this reason, it is possible for all
samples on an instance to be removed from the DataWriter, while the
instance remains (with no associated samples). In contrast, it is not possible
to remove an instance from the DataWriter while any samples associated
with it remain.

Data instances are used to manage several DataWriter QoS policies.
Instances allow the application to set Deadlines, keep History, manage
Ownership, and follow Resource Limits. For additional information on these
QoS policies, see theQuality of Service Features Chapter.

93

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

10.3 Subscribing to Data

On the subscribing side of CoreDX DDS communications, samples represent
the data that has been received by the middleware and may be made
available to the subscribing application (filters or other QoS policy settings
may preclude samples from reaching the application). Each received sample
is associated with a particular instance.

In general, samples and instances are stored in the DataReader until they
are explicitly removed by the subscribing application (see Section 8.3.7Read
(or Take) Data for details), or the CoreDX DDS middleware removes them
based on various QoS policy settings. Similar to the DataWriter
management, the specific rules for maintaining and deleting samples from
the DataReader are different from the rules for maintaining and deleting
instances. For this reason, it is possible for all samples on an instance to be
removed, while the instance remains (with no associated samples). In
contrast, it is not possible to remove an instance while any samples
associated with it remain.

10.4 Instance Lifecycles

Instances are used to manage the data lifecycle. Instances are created
(registered), updated (written), and deleted (unregistered or disposed). For
example, consider the three instances above. Instance key=12 (Scoop) may
shut down for the day while the other two instances (Bob and Wendy) are
still working (and updating). The publishing application can call dispose() on
Scoop (instance key=12) and the remaining instances (Bob and Wendy) will
still be alive. When Scoop comes online again, the publishing application
can start updating that instance (which will retain the same instance
handle). These data lifecycle operations are covered in detail in the
following sections.

10.4.1 Registering Instances

Instances must be registeredwith the DataWriter before any samples
associated with that instance can be written (or deleted). As a convenience,
CoreDX DDS will automatically register an instance when the application
calls one of the write(), unregister_instance(), or dispose() operations
without first registering the instance.

Publishing applications can also explicitly register an instance by calling
DataWriter::register_instance(). The register_instance() operation returns

CoreDX DDS Programmer’s Guide

94

an instance handle which can be used to improve the performance of
subsequent calls to write().

The below example illustrates the use of DataWriter::register_instance()
and DataWriter::write().

Example (C++)

HelloMessageDataWriter dw;

HelloMessage bobData, wendyData;

InstanceHandle_t bobHandle, wendyHandle;

ReturnCode_t retval;

bobData.sender_id = 42;

bobData.sender_name = strdup(“Bob the Builder”);

bobData.msg = strdup(“Hello”);

wendyData.sender_id = 45;

wendyData.sender_name = strdup(“Wendy”);

wendyData.msg = strdup(“Good Morning, Bob!”);

/* calling write() without an instance handle forces

* CoreDX DDS to register this instance (key=42)

 */

retval = dw .write(bobData, HANDLE_NIL);

/* the instance can later be „looked up‟

 */

bobHandle = dw. lookup_instance(bobData);

/* Calling register_instance() first allows for

 * subsequent optimized calls to write()

 */

wendyHandle = dw . register_instance(wendyData);

retval = dw .write(wendyData, wendyHandle);

delete[] wendyData.msg;

wendyData . msg = strdup(“Good night, everyone!”);

/* Changing the „msg‟ in wendyData does not change the

 * key value, and therefore does not change the instance

 * or instance handle.

 */

retval = dw .write(wendyData, wendyHandle);

Figure 10-1: Register Instances Example

95

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Register instance operations are applicable only to DataWriters, and are not
communicated to DataReaders. In fact, DataReaders do not have a concept
of registered instances. Instead, a DataReader has a concept of an
Aliveinstance state. Instances have an Alive state if they have at least one
alive DataWriter actively writing data samples on the instance. Refer
toSection 8.4Sample Status Information (SampleInfo) for additional
information on instance states. In order to manage instance states,
DataReaders store a list of alive, actively writing DataWriters for each
instance.

CoreDX DDS can support millions of unique instances in each DataWriter
and DataReader.

10.4.2 Unregistering Instances

The publishing application can unregister previously registered instances by
calling the DataWriter::unregister_instance() operation. This indicates the
application will no longer be writing any samples for this instance. This is
not the same as disposing the instance (which indicates the instance no
longer exists). The unregister operation simply indicates that this
DataWriter will no longer be publishing updates on the instance. CoreDX
DDS treats an unregister command very much like an application written
data sample. The unregister command is stored by the DataWriter to be
communicated to matched DataReaders. If the instance for this unregister
sample is not already registered, CoreDX DDS will automatically register it
before processing the unregister operation.

After an unregister operation, the instance handle associated with the
unregistered instance is invalid. This is because the CoreDX DDS
middleware may have removed all records of that instance. After an
unregister operation, the instance handle may be reused for a different
instance. The application may re-register the instance and then continue to
publish samples or a dispose on the instance.Unregister operations are
communicated to matched DatasReadersas a sample with the valid_data
flag set to false and indicate that the DataWriter is no longer actively writing
on this instance. The DataReader will remove this DataWriter from the
instance’s list of active DataWriters. When this list of alive, actively writing
DataWriters becomes empty, the state of the instance in the DataReader
Cache will change to NOT_ALIVE_NO_WRITERS. Refer toSection 8.4Sample
Status Information (SampleInfo) for additional information on instance
states.

CoreDX DDS Programmer’s Guide

96

When a DataWriter is deleted by the publishing application, CoreDX DDS
will automatically send an unregister message to matched DataReaders for
every instance the DataWriter knows about. If the publishing application
exits without deleting its DataWriter Entities, the DataReader will not
receive the unregister commands. In this case, the DataReader will
eventually determine the DataWriter is not alive (based on Liveliness QoS
configurations), and remove the DataWriter from the list of alive and
actively writing DataWriters on each instance the DataReader knows about.

10.4.2.1 Relationship between DataWriter::unregister and other QoS Policies

Unregistering an instance on a DataWriter configured for Exclusive
Ownership (via the Ownership QoS Policy) will cause the DataWriter to
relinquish ownership of the instance. Other Exclusive Ownership
DataWriters may take over ownership for the instance.

DataWriters configured with Transient Local Durability will remove the
instance (and all associated samples) after all currently alive and matched
DataReaders acknowledge receiving all samples on the instance.

DataReaders configured with auto_purge_no_writers set in their Reader
Data Lifecycle may delete the instance (and all associated samples), if the
DataWriter that sent this unregister command was the last active
DataWriter on this instance.

10.4.3 Disposing Instances

The publishing application can dispose previously registered instances by
calling the DataWriter::dispose() operation. This indicates that the instance
no longer exists. This is different than the unregister operation (which
indicates this DataWriter is no longer writing on this instance). CoreDX DDS
treats a dispose very much like an application written data sample. The
dispose command is stored by the DataWriter to be communicated to
matched DataReaders. If the instance for this dispose sample is not already
registered, CoreDX DDS will automatically register it before processing the
dispose operation.

Dispose operations are communicated to matched DataReadersas a sample
with the valid_data flag set to false. The DataReader will change the state
of the associated instance to NOT_ALIVE_DISPOSED. Refer toSection
8.4Sample Status Information (SampleInfo) for additional information on
instance states. Note that the DataWriter will still be considered an alive,
actively writing DataWriter on this instance.

97

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

10.4.3.1 Relationship between Dispose and other QoS Policies

DataReaders configured with auto_purge_disposed set in their Reader Data
Lifecycle will delete the instance (and all associated samples) on receipt of a
dispose command.

10.4.4 Instance Handles

An instance handle is a value that can be used to uniquely identify a
registered instance within one DataWriter or DataReader. An instance
handle is generated by a DataWriter when an instance is registered
(returned from a DataWriter::register_instance() call) and for that
DataWriter it will be used to identify the instance until that instance is
unregistered. The instance handle is valid only for the DataWriter that
created it, and only while the instance is registered. Once an instance is
unregistered, the instance handle can no longer be used to identify that
instance. This is a critical detail of the CoreDX DDS middleware. These
instance handles are reused, and after an unregister operation, the old
instance handle may identify a different instance. If the unregistered
instance is re-registered, a different handle may be assigned for the next
‘life’ of that instance.

10.5 Data Cache

DataReaders and DataWriters contain a Data Cache for storing data samples
and instances. The DataWriter’s Data Cache contains samples and instances
that have been written, and the DataReader’s Data Cache contains samples
and instances that have been received. These data caches are sized and
managed according to the configuration of the several QoS policies as
shown in the figure below.

Table 10-2: Instance Example

QoS Policy Configuring this policy on the: Will effect Cache Management on
the:

RELIABILITY DataWriter and DataReader

DataReader

DataWriter

DataReader

DURABILITY DataWriter DataWriter and DataReader

HISTORY DataWriter DataWriter

CoreDX DDS Programmer’s Guide

98

QoS Policy Configuring this policy on the: Will effect Cache Management on
the:

DataReader DataReader

RESOURCE_LIMITS DataWriter

DataReader

DataWriter

DataReader

READER_DATA_LIFECYCLE DataReader DataReader

WRITER_DATA_LIFECYCLE DataWriter DataReader

OWNERSHIP DataWriter DataReader

LIFESPAN DataWriter DataWriter and DataReader

Filters
(TIME_BASED_FILTER,
content filters)

DataReader DataReader

In general, data samples are added to the Data Cache as they are written
(for a DataWriter) or received (for a DataReader). In general, these samples
are removed when they are no longer needed by the application or the
CoreDX DDS middleware. The specific management of samples in the Data
Caches is described in the following sections.

In general, data instances are added to the Data Cache as they are
registered (for a DataWriter) or received (for a DataReader). In general,
these instances are removed when they are no longer needed by the
application or the CoreDX DDS middleware. The management and removal
of instances is different than samples, and in fact, it is possible for instances
to be managed in the DataWriter and DataReader Data Caches even when
there are no samples associated with the instance in the DataCache. The
specific management of instances in the Data Caches is described in the
following sections.

10.5.1 DataWriter Cache

The DataWriter’s Data Cache contains samples that have been written by a
call to DataWriter::write() variant and instances that have been registered

99

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

(or written, since calling DataWriter::write() automatically registers an
instance).

10.5.1.1 Samples in the DataWriter Cache

Samples are added to the Data Cache as they are written by the application.
Samples will be stored n the DataWriter Cache until they are initially written
to the wire, and may be stored longer to meet Reliability and Durability QoS
settings. Samples can be removed from the cache by the application (calling
DataWriter::unregister()) or by the CoreDX DDS infrastructure, based on
QoS policy settings. Samples are removed from the DataWriter cache under
the following conditions:

1. The CoreDX DDS middleware in the publishing application has

completed writing the sample. This happens when:

a. The CoreDX DDS middleware writes the sample to all Best Effort

DataReaders AND

b. (Only if the DataWriter is Reliable and Volatile) The CoreDX DDS

middleware has received an acknowledgement from all

matched Reliable DataReaders

2. OR: Samples expire based on the Lifespan duration

3. OR: A DataWriter has a History QoS Policy kindofKEEP_LAST and the

cache already holds History depth samples and a new sample is created

by write(), unregister() or dispose()

4. OR: A Best Effort DataWriter has non-INFINATE max_samples or

max_samples_per_instance Resource Limits and the cache already holds

the maximum samples and a new samples is created by write(),

unregister() or dispose().

It is important to note that some combinations of QoS settings will cause
the DataWriter cache to grow infinitely, consuming more and more run time
memory. This can happen with a Durability kind of TRANSIENT_LOCAL and
Reliability kind of RELIABLE, a History kind of KEEP_ALL, and Resource Limits
set to infinite. With this combination of QoS settings, the application must
manage instances to meet application or machine resource limitations.

10.5.1.2 Instances in the DataWriter Cache

Instances are added to the DataWriter Cache when the publishing
application registers an instance that is not already registered. Every
sample belongs to an instance, and the instance must be registered before a
sample on that instance samples can be created. The application can

CoreDX DDS Programmer’s Guide

100

explicitly register an instance by calling DataWriter::register_instance(), or
CoreDX DDS will automatically register the instance when the application
attempts to create a sample without first registering its associated instance.

Instances are removed from the DataWriter Cache when the publishing
application unregisters an instance. This must be done explicitly by calling
DataWriter::unregister_instance().

10.5.2 DataReader Cache

The DataReader’s Data Cache contains samples and instances that have
been received (subject to filters). These samples and instances may or may
not have been already read (seen) by the application.

10.5.2.1 Samples in the DataReader Cache

Samples are added to the DataReader Cache when they are received by the
DataReader and the sample passes any filters configured on the DataReader
and there is room in the DataReader Cache for the new sample. If there is
not room in the DataReader Cache, the new sample will be added only if the
History QoS policy is configured to KEEP_LAST.

Samples are eligible to be removed from the DataReader cache under the
following conditions:

1. When the application uses DataReader::take().
2. If the Lifespan QoS is used, samples will be removed from the data

cache after they are expired.
3. If the Data Cache is full and the History kind is KEEP_LAST, the oldest

sample will be removed to make room for a newly received sample.
4. When a Best Effort DataReader has non-INFINITE max_samples or

max_samples_per_instance Resource Limits and the cache already
holds the maximum samples and a new sample is received.

5. When a DataReader has non-INFINITE
autopurge_nowriter_samples_delay or
autopurge_disposed_samples_delay and an instance state is
determined to be NOT_ALIVE_NO_WRITERS or NOT_ALIVE_DISPOSED;
(associated samples will be removed after the specified delay)

10.5.2.2 Instances in the DataReader Cache

Instances are added to the DataReader Cache when a sample belonging to
the instance is received by the DataReader and the instance does not
already exist in the DataReader Cache. The instance is created even if the

101

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

associated sample is not added to the DataReader Cache. Samples may not
be added to the DataReader Cache because of filters applied on the
DataReader or because of the configuration of the History and Resource
Limits QoS policies.

Instances are eligible to be removed from the DataReader Cache when an
instance has a state of NOT_ALIVE_NO_WRITERS and there are no
associated samples.

CoreDX DDS Programmer’s Guide

102

Chapter 11 Application Data Types

11.1 Overview

Every DDS Topic contains one and only one Data Type, a user defined data
type that is used when communicating on the Topic. In most cases, the
application developer defines these DDS Data Type(s) ahead of time so they
may be compiled into the application in a language-independent format.
The Interface Definition Language (IDL) and eXtensible Markup Language
(XML) formats are available for DDS data type definition. A compiler is used
to translate these type definitions into the appropriate programming
language for inclusion into an application.

CoreDX DDS also supports dynamic types, which are Data Types that are not
defined at compile type. With dynamic types, the application developer
may create data types at run-time using the dynamic types API, or create a
data type from a discovered peer DataWriter or DataReader. In this
scenario, the application has no knowledge of the data type until the Topic
is discovered at run time. A complete discussion of dynamic types can be
found in 0: Dynamic Types.

11.2 Why Define the Data Types?

CoreDX DDS is data-centric. This means that the structure and contents of
application data is known and used by the CoreDX DDS middleware. This
allows the CoreDX DDS middleware to perform advanced data management
operations that are not available in other message oriented middleware
technologies. For example, instance and sample history are enabled by
identifying ‘key’ fields in the data to identify unique data instances. This can
be compared to key fields in relational database technologies. Each key
uniquely identifies a collection of related records. In DDS, the key is used to
identify a data ‘instance’. Updates to a data instance are referred to as
‘samples’. The CoreDX DDS middleware can maintain historical samples for
each instance (see the HISTORY Quality of Service). Furthermore, the
CoreDX DDS middleware can apply a Content Filter to data samples.
Content filters are comparable to an SQL query that selects a sub-set of
available data based on conditions. These are a few examples of the power
that a data-centric middleware can offer.

Furthermore, because the data types are well known, the DDS API and
compilers can enforce the usage of proper types throughout the application

103

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

code. This can avoid potentially difficult bugs related to subtle mismatches
of data throughout the distributed system.

The benefits of data-centric middleware are possible because the
middleware has an understanding of the data structures used in your
application. Part of the DDS development workflow includes defining the
application data types and registering them with the CoreDX DDS
middleware.

11.3 Data Types and Discovery

Data Types play an important role in the process of DDS dynamic discovery.
(Additional information on CoreDX DDS discovery can be found in Part
4:Chapter 16CoreDX DDSDiscovery). A DataWriter will match with a
DataReader only if the data type published by the DataWriter is compatible
the data type subscribed to by the DataReader. This provides additional
type safety for DDS applications because a DataReader cannot receive data
in an unexpected format (a commonly occurring programming error when
using other communication middleware products).

11.4 Data Architecture

The process of architecting DDS Data Types is very similar to that of
designing a Relational Database schema. Because the data structures used
by your application will be conveyed between applications, and possibly
over a network, it is important that they be designed with efficiency in
mind. This ‘data normalization’ process is important to effective
deployment of DDS technology.

For large or complex systems, data interfaces, connections, and
communicated types will become very complex. In these cases, data
modeling tools may provide a necessary framework for managing the data
types across a system. Many data modeling tools support generating DDS
compatible IDL or XML that can be processed by the CoreDX DDS data type
compiler.

11.5 Data Type Definition

Once the appropriate data structures have been designed, they must be
written in a language that the CoreDX DDS middleware can understand.
CoreDX DDS supports 2 language independent formats: IDL and XML.

IDL is a simple and flexible language for defining data types. It has a rich set
of primitive and complex data types, and there are defined mappings from

CoreDX DDS Programmer’s Guide

104

IDL to many common programming languages. This makes IDL a good
language for DDS.

11.6 Data Definition Syntax

A DDS Data Type is always a structure, which may contain any combination
of basic and constructed types, including embedded structures. Table
11-1is a list of basic types supported in the CoreDX DDS IDL and XML.

Table 11-1: Basic User Defined Types

Basic Type Description

short 2 bytes

long 4 bytes

long long 8 bytes

unsigned short 2 bytes

unsigned long 4 bytes

unsigned long long 8 bytes

float 4 bytes

double 8 bytes

char 1 byte

wchar 4 bytes

boolean 1 byte

octet binary data, 1 byte

string bounded and unbounded

constant constant type, always a number

typedef Alias or alternate name

105

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Table 11-2is a list of constructed types supported in the CoreDX DDS DDL.

Table 11-2: Constructed User Defined Types

Constructed Type Description

struct Structure type

union Union type

array Single or multi dimensional

sequence bounded and unbounded

enum Variable sized collection of names
with constant values

bitset Variable sized list of named bit-
sized flags

map Key-value pairs

CoreDX DDS IDL does not support the anytype.

11.7 IDL and XMLLanguage Mappings

The CoreDX data type compiler generates source code for use in application
programs. These files contain, among other things, a translation of the IDL
or XML specified data type into a language specific data type. The mapping
of IDL or XML to programming language follows the standards of the OMG.

The following subsections provide an overview of the available data types
and how they are mapped to each of the supported CoreDX DDS
programming languages. A full description of available data types and
configuration options as specified in the X-Types and IDL specifications is
provided in the CoreDX DDS Type System Programmer’s Guide.

CoreDX DDS Programmer’s Guide

106

11.7.1 Basic Types

Table 11-3: Primitive Data Type Mapping

IDL Type XML
Type

C C++ C# Java

char char8 char char char char

wchar char32 char32 char32 int int

octet byte unsigned
char

unsigned
char

byte byte

short int16 short short short short

unsigned
short

uint16 unsigned
short

unsigned
short

ushort short

long int32 int int int int

unsigned
long

uint32 unsigned
int

unsigned
int

uint int

long long int64 int64_t int64_t long long

unsigned
long long

uint64 unsigned
int64_t

unsigned
int64_t

ulong long

float float32 float float float float

double float64 double double double double

string string char * char * String String

11.7.2 Complex Types

Complex types are described in detail in the CoreDX DDS Type System
Programmer’s Guide.

107

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

11.8 Creating Data Types

11.8.1 Using IDL

The syntax of IDL is flexible and is similar to other languages such as C. The
IDL file can contain any combination of:

 C/C++ style comments

 C compiler directives

 #if, #ifdef, #else, #endif,

 #include, etc.

 namespace / module

 constant definitions

 enumerated type definitions

 typedefs

 structures (these become DDS data types)

 unions

 annotations

Figure 11-1: Example IDL file provides an example of a IDL file.

Example IDL data defnition file

//===

// CoreDX DDS IDL example

//===

struct SenderType

{

 string firstname;

 string lastname;

};

struct StringMsg

{

 SenderType sender;

 long time_sent;

 sequence<string> old_msgs;

 string msg;

};

CoreDX DDS Programmer’s Guide

108

Figure 11-1: Example IDL file

The syntax for these IDL file elements adheres to the OMG’s IDL syntax

specification as defined in the IDL 4 specification. The IDL type definitions
are the primary focus of IDL files. The CoreDX DDS IDL compiler
(coredx_ddl) can parse fully compliant IDL files; it will use the DDS type
definitions and ignore any non-DDS definitions when generating CoreDX
DDS code.

11.8.2 USING XML

The XML syntax allows the same data definitions as IDL, following the
format of the TBD schema. The XML file may contain:

 XML comments

 namespace / module

 constant definitions

 enumerated type definitions

 typedefs

 structures (these become DDS data types)

 unions

 annotations

Figure 11-1: Example IDL file provides an example of a XML file.

Example XML dat type definition file

//===

// CoreDX DDS XML example

//===

<dds:types

xmlns:dds="http://www.omg.org/ptc/2011/01/07/XML_Type_Re

presentation"

xmlns="http://www.omg.org/ptc/2011/01/07/XML_Type_Repres

entation">

<struct name="SenderType">

<member name="firstname"

 id="0"

 type="string"/>

http://www.omg.org/ptc/2011/01/07/XML_Type_Representation
http://www.omg.org/ptc/2011/01/07/XML_Type_Representation
http://www.omg.org/ptc/2011/01/07/XML_Type_Representation
http://www.omg.org/ptc/2011/01/07/XML_Type_Representation
http://www.omg.org/ptc/2011/01/07/XML_Type_Representation
http://www.omg.org/ptc/2011/01/07/XML_Type_Representation

109

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

<member name="lastname"

 id="1"

 type="string"/>

</struct>

<struct name="StringMsg">

<member name="sender"

 id="0"

 type="nonBasic"

 nonBasicTypeName="SenderType"/>

<member name="time_sent"

 id="1"

 type="int32"/>

<member name="old_msgs"

 id="2"

 type="string"

 sequenceMaxLength="(-1)"/>

<member name="msg"

 id="3"

 type="string"/>

</struct>

</dds:types>

11.9 Configuring Data Types

Data types may be configured using annotations. Configuration options
include specifying key fields, marking fields as optional or mandatory, and
specifying the extensibility of the data type.

This document describes the syntax for defining keys. The CoreDX DDS Type
System Programmer’s Guide describes data type configuration options in
detail.

11.9.1 Specifying Keys

The application developer, when creating a DDS data type, can specify one
or more attributes of the DDS data type as a key. The CoreDX DDS
middleware uses those key attributes to organize the data into instances
(see the Instances and Samples chapter for additional information).

A key can be any field in the DDS Data Type, except for sequences, unions,
and enums. The application developer may define any number of fields to
be a key field. All the fields labeled as a key field are concatenated together
to form one key for the DDS Data Type.

CoreDX DDS Programmer’s Guide

110

There are a few methods to specify a key field in IDL.

1. Annotation before the field

The following example shows how to define keys using the IDL 4 annoatition
before the key field, using IDL.

Example IDL file

//===

// CoreDX DDS IDL example – using keys

//===

// This #ifdef block allows the following IDL to be

// compatible with all other IDL

#ifdef DDS_IDL

#define DDS_KEY __dds_key

#else

#define DDS_KEY

#endif

// the „sender_id‟ field is defined as a key

struct StringMsg1

{

 struct SenderType {

 string first_name;

 string last_name;

} sender;

 DDS_KEY long sender_id;

 long time_sent;

 sequence<string> old_msgs;

 string msg;

};

// the „sender‟ field is defined as a key

struct StringMsg1

{

 DDS_KEY struct SenderType {

 string first_name;

 string last_name;

} sender;

 long sender_id;

 long time_sent;

 sequence<string> old_msgs;

 string msg;

};

111

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

// the key is a combination of the sender‟s last name

// and the sender_id

struct StringMsg1

{

 struct SenderType {

 string first_name;

 DDS_KEY string last_name;

} sender;

 DDS_KEY long sender_id;

 long time_sent;

 sequence<string> old_msgs;

 string msg;

};

2. Annotation after the field

The following example shows how to define keys using the IDL 4 annoatition
after the key field, using IDL.

Example IDL file

//===

// CoreDX DDS IDL example – using keys

//===

// This #ifdef block allows the following CoreDX DDS IDL to be

// compatible with all other IDL

#ifdef DDS_IDL

#define DDS_KEY __dds_key

#else

#define DDS_KEY

#endif

// the „sender_id‟ field is defined as a key

struct StringMsg1

{

 struct SenderType {

 string first_name;

 string last_name;

} sender;

 DDS_KEY long sender_id;

 long time_sent;

 sequence<string> old_msgs;

 string msg;

CoreDX DDS Programmer’s Guide

112

};

// the „sender‟ field is defined as a key

struct StringMsg1

{

 DDS_KEY struct SenderType {

 string first_name;

 string last_name;

} sender;

 long sender_id;

 long time_sent;

 sequence<string> old_msgs;

 string msg;

};

// the key is a combination of the sender‟s last name

// and the sender_id

struct StringMsg1

{

 struct SenderType {

 string first_name;

 DDS_KEY string last_name;

} sender;

 DDS_KEY long sender_id;

 long time_sent;

 sequence<string> old_msgs;

 string msg;

};

3. Oringial CoreDX DDS syntax

Before the formalization of the IDL 4 specification, the definition of DDS
keys was not specified in any of the DDS standards. New CoreDX DDS
versions accept both the IDL 4 key definition syntax, and the original
CoreDX DDS key definition syntax.

This section describes the original CoreDX DDS syntax. To specify a field
to be a key, add the string “__dds_key” in front of the field definition.
The CoreDX DDS data type compiler defines a compiler flag: “DDS_IDL”,
and it is common to use this to provide compatible IDL syntax in the IDL
files. The following IDL provides several examples of using keys in the
IDL.

113

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Example IDL file

//===

// CoreDX DDS IDL example – using keys

//===

// This #ifdef block allows the following CoreDX DDS IDL to be

// compatible with all other IDL

#ifdef DDS_IDL

#define DDS_KEY __dds_key

#else

#define DDS_KEY

#endif

// the „sender_id‟ field is defined as a key

struct StringMsg1

{

 struct SenderType {

 string first_name;

 string last_name;

} sender;

 DDS_KEY long sender_id;

 long time_sent;

 sequence<string> old_msgs;

 string msg;

};

// the „sender‟ field is defined as a key

struct StringMsg1

{

 DDS_KEY struct SenderType {

 string first_name;

 string last_name;

} sender;

 long sender_id;

 long time_sent;

 sequence<string> old_msgs;

 string msg;

};

// the key is a combination of the sender‟s last name

// and the sender_id

struct StringMsg1

{

 struct SenderType {

 string first_name;

 DDS_KEY string last_name;

} sender;

CoreDX DDS Programmer’s Guide

114

 DDS_KEY long sender_id;

 long time_sent;

 sequence<string> old_msgs;

 string msg;

};

Figure 11-2: IDL keys example

More information on data type configuration, keys, and annotation syntax is
available in the CoreDX DDS Type System Programmer’s Guide.

11.10 Using the CoreDX DDS Data Type Compiler

The CoreDX DDS data type compiler (coredx_ddl or coredx_ddl.exe)
compiles the DDS types defined in IDL or XML and generates type-specific
source code to be compiled and linked with a CoreDX DDS application. The
CoreDX DDS data type compiler provides some command line arguments to
tailor the behavior.

Table 11-4: coredx_ddl command line options

coredx_ddl option Default Description

-h n/a Help: print coredx_ddl usage information

-a alignment flag 0 0 == don’t count CDR ENCAP HDR in alignment. This
is the default in CoreDX DDS versions 3.5.3 and
newer, and is interoperable with other DDS
implementations.

1 == count CDR_ENCAP_HDR is alignment. This
value is interoperable with older CoreDX DDS
versions (before v3.5.3).

115

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

coredx_ddl option Default Description

-b name IDL or XML
filename

Basename: provide an alternate filename prefix to
use for the generated files. The default is the
basename of the IDL or XML filename. For example,
a IDL file named “hello.ddl” will, by default, produce
generated files named like “hello.h”,
“helloTypeSupport.h”, etc. The user can provide this
argument to change the generated filename prefix
to a string specified by name.

-b option only valid for C and C++ languages

-d directory name Current directory Output Directory: provide an alternate directory to
put the resulting generated code. The default is the
current working directory.

-D preprocessor
symbol

n/a This option is used to specify pre-processor defines.
Predefined by CoreDX DDS: DDS_IDL, COREDX_DDS

-e endian HOST CPU
architecture

Endian: one of “b” or “l”, provide the byte order (big
endian or little endian) to use when marshalling
published data to transmit over the wire. The
default is the endian of the HOST platform (the
platform where the coredx_ddl compiler is running).
This should be used when the TARGET platform has
a different endianness than the HOST platform.

If the endianness of the TARGET platform is not set
correctly, DDS applications that perform a read or
take operation will have undefined behavior and
may segfault.

-f filename No default, must
be specified

File: provide the IDL or XML file to process

-F Enabe support for the full X-Types type system.
Without this flag, types are fully backwards
compatible, and errors are generated with types and
annotations that are not backwards compatible.

CoreDX DDS Programmer’s Guide

116

coredx_ddl option Default Description

-g Construct preprocessor guard from frull input
filename (default is base input filename)

-G guard_variable Specify preprocessor guard variable used in c/c++
headers (default is base input filename).

-I include_flags Enable or disable generation of certain code
components. If a flag is prefixed with ‘^’, then
disable generation of that component. Otherwise,
enable generation of that component. Flags include:

g: generate ‘get_field()’ routine for struct/union
types (default is enabled)

O: generate TypeObject in TypeSupport (default is
enabled)

p: generate ‘print’ routine for struct types (default is
disabled)

s: generate unmarshal code with extra data checks
(default is disabled)

T: generate TypeCode in TypeSupport source
(default is enabled). Note ‘–i ^T’ is equivalent to ‘-T’

x: generate extra Type typedefs API’s (default is
enabled)

X: generate extra X-Types defined TypeSupport API’s
(default is disabled)

-I include path empty This option provides a path that will be searched to
satisfy ‘#include’ directives found in the IDL file(s).

-I path Specify the include path, will be passed to the
preprocessor.

-j java_version 7 Controls some aspects of Java code generation (5 or
7).

117

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

coredx_ddl option Default Description

-l language c Language: one of “c”, “cpp”, “csharp”, “java” provide
the language to use for the generated source code.

-L license_file Specify the full path to the CoreDX DDS license file.

-p preprocessor cpp (linux)

cl.exe /E (win)

Preprocessor: provide the preprocessor to use. The
location of the specified preprocessor must be in the
PATH.

-s This option suppresses the generation of code for
‘included’ IDL files.

-S This option strips the path from generated #include
statements. It is only relevant if ‘-s’ is in effect.

-T This option suppresses the generation of ‘typecode’
data inline in TypeSupport.

-X Specify that the input is in XML format (as opposed
to IDL or DDL).

-Wno-<warning> Disable the warning <warning>. For example: -Wno-
1091

The CoreDX DDS data type compiler generates several source code files. All
generated files are written to the current working directory (the directory
from which coredx_ddl was run), unless the –d <output_directory> option is
used.

For additional CoreDX data type compiler options for use with Dynamic
Types, refer to 0:

CoreDX DDS Programmer’s Guide

118

Chapter 12 Configuring Reader Specific Locators

12.1 Overview

Some network environments can benefit from having a subset of traffic
isolated to a specific multicast address (different from other traffic).

DataReaders and DataWriters in CoreDX DDS inherit the 'default' multicast
and unicast locators from the DomainParticipant. If no specific locators are
specified, then the entities will use the defaults. If a specific multicast
locator is specified, it will be used in place of any default multicast locators.
If a specific unicast locator is specified, it will be used in place of any default
unicast locators.

The default UDP IPv4 multicast address used for user data is 239.255.0.1.

By configuring a DataReader to accept data on a specific address (Locator),
then all DataWriters matched with that DataReader will send data to that
specific address.

12.2 Configuration

The specific locators are configured in the
DataReaderQos.rtps_reader.locators QoS policy. This field is a sequence of
CoreDX_Locators. A CoreDX_Locators has the following structure:

 typedef struct CoreDX_Locator_t {

 int kind;

 uint32_t port;

 unsigned char addr[COREDX_LOCATOR_ADDR_LEN];

 } CoreDX_Locator;

To define a specific multicast locator in 'C' for the UDP transport, use the
following:

 CoreDX_Locator l;

 DDS_DataReaderQos dr_qos;

 DDS_Subscriber_get_default_datareader_qos(sub,

&dr_qos);

memset(&l, 0, sizeof(l));

119

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

 l.kind = COREDX_UDPV4_LOCATOR_KIND_QOS;

 l.port = 7400;

 l.addr[12] = 239;

 l.addr[13] = 255;

 l.addr[14] = 0;

 l.addr[15] = 2;

 seq_add(&dr_qos.rtps_reader.locators, &l);

To define a specific multicast locator in 'C++' for the UDP transport, use the
following:

 sub->get_default_datareader_qos(dr_qos);

DDS::Locator l;

 l.kind = COREDX_UDPV4_LOCATOR_KIND_QOS;

 l.port = 7400;

memset(l.addr, 0, COREDX_LOCATOR_ADDR_LEN);

 l.addr[12] = 239;

 l.addr[13] = 255;

 l.addr[14] = 0;

 l.addr[15] = 2;

 dr_qos.rtps_reader.locators.push_back(l);

CoreDX DDS supports setting specific UDP MULTICAST locators on the
DataReader. Other combinations (other transports, or unicast locators) are
not supported at this time.

Dynamic Types.

12.3 Generated Code

The CoreDX DDS data type compiler will generate several source files, listed
in Table 12-1. Detailed descriptions of the generated files are listed below.
[If RPC interfaces are defined in the data type file, additional source files are
generated. Those are described in the CoreDX DDS RPC Programmer’s
Guide.

Table 12-1: Generated source code file names

C filenames C++ filenames C# filenames Java filenames

CoreDX DDS Programmer’s Guide

120

name.h

name.c

name.hh

name.cc

name.cs name.java

nameTypeSupport.h

nameTypeSupport.c

nameTypeSupport.hh

nameTypeSupport.cc

nameTypeSupport.cs nameTypeSupport.java

nameDataReader.h

nameDataReader.c

nameDataReader.hh

nameDataReader.cc

nameDataReader.cs nameDataReader.java

nameDataWriter.h

nameDataWriter.c

nameDataWriter.hh

nameDataWriter.cc

nameDataWriter.cs nameDataWriter.java

12.3.1 Type Definition

The type definition files (name.h, name.c in C) contain the language specific
data type declarations for the DDS data types defined in the IDL or XML file.
They also include basic initialization, copy, and delete operations for the
data types.

12.3.2 Typed TypeSupport Definition

The type support files (nameTypeSupport.h, nameTypeSupport.c in C)
contain the language and type specific TypeSupport structures. For
languages that support heredity, these are classes that derive from the base
TypeSupport class.

12.3.3 Typed DataReader and DataWriter Definitions

The data reader (nameDataReader.h, nameDataReader.c) and data writer
files (nameDataWriter.h, nameDataWriter.c) contain the language and type
specific DataReader and DataWriter structures. For languages that support
heredity, these are classes that derive from the base DataReader and
DataWriter classes.

The application should use the type specific operations for DataReader and
DataWriter calls.

121

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Chapter 13 Quality of Service Features

One of the powerful features of DDS is the support for various Quality of
Service (QoS) settings. QoS settings allow the application developer to
tailor the behavior of publishers, subscribers, and the communications
between them.

Most DDS Entities, from a DomainParticipantFactory down to the
DataReader and DataWriter, have a set of QoS settings that apply. The QoS
settings are contained in a structure. For example, a
DomainParticipantFactory has a DomainParticipantFactoryQos structure
containing all the applicable QoS settings.

The QoS settings for an entity can be established when the entity is created,
or by using the get_qos() and set_qos() methods on each entity, as the
following C example illustrates.

Sample C Application Code

DDS_Subscriber subscriber;

DDS_DataReader dr;

DDS_DataReaderQos drqos;

DDS_DataReaderListener dr_listener;

/* … code deleted … */

/* Setup a non-default DataReader QoS structure */

DDS_Subscriber_get_default_datareader_qos(subscriber, &drqos);

drqos.history.kind = DDS_KEEP_LAST_HISTORY_QOS;

drqos.history.depth = 5;

/* EXAMPLE 1: Define the DataReader QoS at creation */

dr = DDS_Subscriber_create_datareader(subscriber,

 topic_descr,

&drqos, &dr_listener,

 DDS_DATA_AVAILABLE_STATUS);

/* EXAMPLE 2: Set the QoS after creating the DataReader */

DDS_DataReader_set_qos(dr, &drqos);

Figure 13-1: Configuring QoS - Sample C Code

CoreDX DDS Programmer’s Guide

122

13.1 QoS Compatibility Between Publishing and Subscribing Entities

Som QoS policies apply only to the entity on which they are configured.
Some QoS policies are shared with peer DDS applications through DDS
discovery. And some QoS policies are used to determine matches between
publishing and subscribing entities. In order to have effective
communications, these QoS settings used to determine matches must be
compatible between publishing entities and subscribing entities. Publishers
and DataWriters offer a QoS configuration. Subscribers and DataReaders
request a QoS configuration. If the Publisher and DataWriter offer a
configuration setting that is at least what the Subscriber and DataReader
requested, this is considered a match, even if the QoS configurations are not
the same.

For example, the DURABILITY QoS setting indicates weather a publishing
application will save previously published data and whether a subscribing
application expects to receive data that was published before it was
created. Consider a subscribing application requesting a DURABILITY QoS to
be able to receive history (data published before the DataReader existed),
and a publishing application offering a DURABILITY QoS indicating it will not
save any data after it has been published. It is impossible for this publishing
application to meet the request of this subscribing application, and effective
communication will not occur. However, if the subscribing application
requests a DURABILITY QoS to not receive any history, and a publishing
application offers a DURABILITY QoS to make history available, the QoS
settings match. In this case, the publishing application is offering more than
the subscribing application is requesting.

When attempting to match up publishing applications with subscribing
applications, the CoreDX DDS middleware will consider the QoS settings on
both sides (as well as on the Topic). If all QoS settings are compatible, the
publishing application and subscribing application will be “matched”. If any
QoS settings are incompatible both the publishing and subscribing
applications are notified. The OfferedIncompatibleQos status is updated on
the publishing application and the RequestedIncompatibleQos status is
updated on the subscribing application. For information on how to retrieve
communication statuses, see the Communication Status chapter.

Table 13-1 lists the compatibility of each QoS setting (whether or not the
QoS setting must be compatible between publishing entities, subscribing
entities, and topics).

123

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

13.2 QoS Mutability

Many QoS settings must be configured before the DDS Entity is enabled.
However, there are some QoS settings that can be changed dynamically at
any time. These QoS settings are considered mutable or changeable. Table
13-1 lists the mutability of each QoS setting (whether or not the QoS setting
can be dynamically changed at any time). Attempting to change a QoS
setting that is not mutable using a set_qos() operation will return
DDS::RETCODE_IMMUTABLE_POLICY.

13.3 Quality of Service Details

Table 13-1 lists all the standard DDS QoS policies, along with compatibility
and mutability characteristics. Following the table is a detailed list of all
supported QoS features from the OMG DDS specifications and description
of their use. CoreDX DDS supports additional policies beyond those defined
in the OMG DDS specifications. QoS policies available with CoreDX DDS are
listed in the 2 tables below.

Table 13-1: Standard QoS Policies Summary

QoS Setting Applicable Entities Must be
compatible

Dynamically
Changeable

DEADLINE DataWriter, DataReader YES YES

DESTINATION_ORDER DataWriter, DataReader YES no

DURABILITY DataWriter, DataReader YES no

DURABILITY_SERVICE Not Supported no no

ENTITY_FACTORY DomainParticipantFactory,
DomainParticipant, Publisher,
Subscriber

no YES

GROUP_DATA Publisher, Subscriber no YES

HISTORY DataWriter, DataReader no no

CoreDX DDS Programmer’s Guide

124

QoS Setting Applicable Entities Must be
compatible

Dynamically
Changeable

LATENCY_BUDGET DataWriter, DataReader YES YES

LIFESPAN DataWriter (n/a) YES

LIVELINESS DataWriter, DataReader YES no

OWNERSHIP DataWriter, DataReader YES no

OWNERSHIP_STRENGTH DataWriter (n/a) YES

PARTITION Publisher, Subscriber no YES

PRESENTATION Publisher, Subscriber YES no

PROPERTY DomainParticipant no Depends on use

READER_DATA_LIFECYCLE DataReader (n/a) YES

RELIABILITY DataWriter, DataReader YES no

RESOURCE_LIMITS DataWriter, DataReader no no

TIME_BASED_FILTER DataReader (n/a) YES

TOPIC_DATA Topic no YES

TRANSPORT_PRIORITY DataWriter (Not Supported) (n/a) YES

USER_DATA DataWriter, DataReader no YES

WRITER_DATA_LIFECYCLE DataWriter (n/a) YES

125

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Table 13-2: CoreDX DDS QoS Policies

QoS Setting Applicable Entites Must be
compatible

Dynamically
Changeable

DISCOVERY DomainParticipant no no

ENTITY_NAME (all) no no

LOGGING (all) no YES

PEER_PARTICIPANT DomainParticipant no no

RTPS_READER DataReader no no

RTPS_WRITER DataWriter no no

THREAD_MODEL DomainParticipant no no

13.3.1 DEADLINE

The Deadline QoS policy is used when a Topic is expected to have each
instance updated periodically. The DataWriter offers a Deadline contract
where the application guarantees to update each instance every n
timeperiod. The DataReader requests a Deadline contract where the
application expects each instance to be updated every n time period.

When a writing application does not satisfy the DataWriter’s Deadline
period (configured in its QoS policy), the offered_deadline_missed status is
updated. The writing application may choose to be notified of this event
through any of the offered notification methods (refer to Communication
Status for more information).

When a writing application does not satisfy a matched DataReader’s
Deadline period (configured in it’s QoS policy), the
requested_deadline_missed status is updated. The reading application may
choose to be notified of this event through any of the available notification
methods (refer to Communication Status for more information).

This is a QoS policy that must be compatible before DataReaders and
DataWriters will match. The DataWriter must have a Deadline<= the

CoreDX DDS Programmer’s Guide

126

DataReader’s Deadline before the DataWriter and DataReader will
communicate. If the Deadlines are not compatible, CoreDX DDS will
generate an IncompatibleQos status (see the Communication Status chapter
for additional information).

13.3.2 DESTINATION_ORDER

The Destination Order policy determines the logical order at reception time
of data samples for an instance. This is important when the infrastructure
must determine which samples to keep at the DataReader, based on other
QoS policies like HISTORY and RESOURCE_LIMITS. The possible values for
Destination Orderare by reception timestamp and by source timestamp.
When set to by reception timestamp, CoreDX DDS will use the reception
time to determine the order of samples. When set to by source timestamp,
CoreDX DDS will use the timestamp set by the publisher to determine the
order of samples, regardless of when the data sample was received.

13.3.3 DISCOVERY (CoreDX DDS Extension)

The Discovery policy allows the tailoring of DomainParticipant discovery
aspects, including configuration of the built-in DataReaders and
DataWriters. Details on the various configuration items contained in the
Discovery QoS policy are described in Part 4:Chapter 16CoreDX
DDSDiscovery.

13.3.4 DURABILITY

The Durability policy controls whether or not CoreDX DDS will make already
published data available to late joining DataReaders. The publish-subscribe
paradigm offered by CoreDX DDS allows applications to write data even
when there are no current readers on the network. Further, a DataReader
has the option to receive historical data (data published before this
DataReader came online) in addition to currently published data. The
Durability policy allows this configuration.

The possible values for DurabilityareVolatile, Transient Local, Transient, and
Persistent. When set to Volatile, CoreDX DDS will not save previously
published data for late joining readers. When set to Transient Local, CoreDX
DDS will save previously published data for the lifespan of the DataWriter
for late joining readers. With a Transient Local setting, once the DataWriter
is destroyed, its published history data is no longer available. When set to
Transient, CoreDX DDS will save previously published data for the lifespan of
the publishing application for late joining readers. With a Transient setting,

127

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

once the publishing application exits, its published history data is no longer
available. When set to Persistent, CoreDX DDS will save previously
published data in permanent storage, where it can outlive the publishing
application and a system reset. This history data is available to late joining
readers.

The ‘wait_for_historical_data’ may be used on DataReaders with a
Durability setting of Transient Local or stronger to block the application
until all historical data has been received by the DataReader. Refer to
section 8.5.2Wait for Historical Data for additional information.

This is a QoS policy that must be compatible before DataReaders and
DataWriters will match. The DataWriter must have a Durability<= the
DataReader’s Durabilitybefore the DataWriter and DataReader will
communicate, where the Durability values are ordered so that
Volatile<TransientLocal<Transient<Persistent. If the Durabilitiesare not
compatible, CoreDX DDS will generate an IncompatibleQos status (see the
Communication Status chapter for additional information).

The number of data samples and instances stored for any Durability setting
is determined in part by the configuration of the History and Resources
LimitsQoS policies.

CoreDX DDS currently supports only the volatile and transient local values
for Durability.

13.3.5 DURABILITY_SERVICE

The Durability Service QoS policy is applicable only when the Durability QoS
policy is set to Transient or Persistent. This policy configures the duration
and amount of data stored.

CoreDX DDS currently does not support the Durability Service QoS policy.

13.3.6 ENTITY_FACTORY

The Entity Factory QoS policy controls the behavior of create_xxx() and
delete_xxx() operations on a factory entity. Factory entities include:
DomainParticipantFactory, DomainPartition, Publisher, and Subscriber.

The Entity Factory QoS policy contains one configuration item:
autoenable_created_entities. When set to TRUE, all Entities returned by

CoreDX DDS Programmer’s Guide

128

create_xxx() operations are already enabled. When set to FALSE, the
application must explicitly call enable() on all created Entities.

The autoenabled_created_entities=FALSE setting is commonly used when
configuring one or more Transporrts for a DomainParticipant. Since the
transport must be configured and installed before the DomainParticipant is
enbled, it is necessary to disable the automatic enable of the
DomainParticipant.

The default setting for the Entity Factory QoS policy is TRUE.

13.3.7 ENTITY_NAME (CoreDX DDS Extension)

The Entity Name QoS policy allows the application add a string description
to each CoreDX DDS Entity. This information is shared during discovery, and
accessible through the applicable built-in Topics.

13.3.8 GROUP_DATA

The Group Data QoS policy allows the application to attach additional
information to created Entityobjects. This data is not used by CoreDX DDS,
and is made available to the application by the Built-in Topics, along with
other discovery information. For more information, see the 9.2Built-In
Topicssection.

13.3.9 HISTORY

The History QoS policy (along with the Resource Limits QoS policy) controls
the size and behavior of the DataReader and DataWriter data caches. The
data caches may be used to buffer written data on the DataWriter, and
received data on the DataReader. The History QoS policy determines how
CoreDX DDS will save data samples, and the number of samples that may be
saved, for each Instance. The History QoS policy can provide some amount
of buffering on both the publishing and subscribing sides.When combined
with the Durability QoS policy on a DataWriter, this QoS policy will
determine the amount of data history saved for late joining readers. On a
DataReader, this policy will determine the number of samples available to
return on a read() or take() operation.

The possible values for the Historykind are KEEP ALL and KEEP LAST. When
the History kind is configured to KEEP_LAST, CoreDX DDS may delete stored
data samples to make room for newly written (or received) samples. When
the History kind is configured to KEEP_LAST, CoreDX DDS will never ‘bump’

129

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

a stored data sample to make room for a newly written (or
received)sample.When set to KEEP LAST, the application can define a depth
(number of samples to keep). [Depth is not used by CoreDX DDS when the
History.kind is set to KEEP_ALL.]

A History kind of KEEP_ALL may be used in combination with the Resource
Limits QoS policy in order to bound the number of samples and/or instances
stored by CoreDX DDS.

Here is an example of how the History kinds can behave. Let us consider a
scenario where a Reliable DataWriter is writing samples faster than at least
one if it’s matched Reliable DataReaders can read or process them. In this
case, CoreDX DDS will attempt to buffer the unread samples. Samples will
be buffered first at the DataReader. With a History kind of KEEP_LAST,
samples are buffered up to the History depth, and then they may be
overwritten. With a History kind of KEEP_ALL, samples are buffered up to
the configured Resource Limits. If Resource Limits are configured to be
infinite, samples will be buffered infinitely. If Resource Limits are
configured to be finite value(s) and the DataReader has buffered that
configured number of samples, the DataReader will drop (and not
acknowledge) any more received samples. At this point, samples will be
buffered at the DataWriter.

Note that using a History set to KEEP_ALL in combination with a Durability
set to TRANSIENT_LOCAL (or higher) can be a dangerous combination. The
CoreDX DDS infrastructure may keep every sample ever written by the
DataWriter, until the publishing application specifically disposes or
unregisters the Instance, or until Lifespanlimits are expired (see the
Instances and Samples chapter). This can quickly utilize all available
resources for the publishing application, or the host machine if Resource
Limits are not specified.

13.3.10 LATENCY_BUDGET

The Latency Budget QoS policy specifies a delay is acceptable in the time
between when a publishing application writes data and when a subscribing
application is notified the data is available. CoreDX DDS uses this policy as a
hint – not a contract that must be monitored or enforced. By default, the
Latency Budget is set to zero (0), indicating the delay should be minimized.

It may not be obvious why an application would want to configure a
LatencyBudget greater than zero. Here are two examples of when it may
be appropriate to configure a Latency Budget. First, consider a publishing

CoreDX DDS Programmer’s Guide

130

application that is publishing a very high rate of data samples. If theLatency
Budget is set to zero, CoreDX DDS will attempt to write every data sample
onto the network as soon as it is available from the application, which may
not be very efficient. In this case, setting a Latency Budgetgreater than zero
allows CoreDX DDS to queue multiple data samples to write in a batch,
which will reduce the amount over overhead required, and may improve
performance. For another example, consider a subscribing application that
is receiving a very high rate of data samples. If the Latency Budget is set to
zero, CoreDX DDS will notify the application for every data sample that
arrives at the DataReader. However, if the Latency Budget is set to a value
greater than zero, CoreDX DDS can queue received data samples, and send
1 notification for multiple available samples. In this case, the subscribing
application is issuing fewer calls to read() or take() but receiving all the same
data samples.

13.3.11 LIFESPAN

The Lifespan QoS policy allows CoreDX DDS to expire old data samples. The
application configures an expiration duration time on a DataWriter.

A DataReader receiving data from this DataWriter will periodically check all
the samples that have been received, and if any samples have expired, they
will be removed from the DataReader cache.

A DataWriter will also periodically check all the samples in its DataWriter
Cache and may remove any samples that have expired (actual removal may
be delayed due to Reliability QoS policy settings).

By default, the expiration duration is 0 (meaning an infinite duration, or no
expiration).

13.3.12 LIVELINESS

The Liveliness QoS policy controls the mechanism used to ensure
DataWriters on the network remain “alive” to their matched DataReaders.
The possible values for the Liveliness QoS policy are Automatic, Manual by
Participant, and Manual by Topic.

The Automatic setting configures CoreDX DDS ensure all DataWriters within
a DomainParticipant stay alive, without requiring any specific action from
the publishing application.

131

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

The manual settings: Manual by Participant and Manual by Topic require
the publishing application to periodically assert the liveliness to indicate the
corresponding Entity is still alive. This can be explicit by calling the
assert_liveliness() operation or implicit by writing data. The Manual by
Participant configuration allows any one DataWriter to assert liveliness for
all DataWriters within that DomainParticipant. The Manual by Topic
configuration requires each DataWriter to assert its own liveliness.

The Liveliness QoS policy includes a leaseduration. For a DataWriter, the
lease duration is an offered contract that the writer will assert liveliness at
least once every specified duration. For a DataReader, the lease duration is
a request that the writer assert liveliness at least once every specified
duration interval.

When a writing application does not satisfy the DataWriter’s Liveliness lease
duration, the liveliness_lost status is updated. The writing application may
choose to be notified of this event through any of the offered notification
methods (refer to Communication Status for more information).

When a writing application does not satisfy a matched DataReader’s
liveliness period, the liveliness_changed status is updated. The reading
application may choose to be notified of this event through any of the
available notification methods (refer to Communication Status for more
information).

This is a QoS policy that must be compatible before DataReaders and
DataWriters will match. When configured to one of the Manual kinds, the
DataWriter must have a Liveliness lease duration>= the DataReader’s
Liveliness lease duration before the DataWriter and DataReader will
communicate. If the Livelinessisnot compatible, CoreDX DDS will generate
an IncompatibleQos status (see the Communication Status chapter for
additional information).

13.3.13 LOGGING (CoreDX DDS Extension)

The Logging QoS policy provides fine grained control over the levels and
categories of log messages produced by CoreDX DDS. Setup and
configuration of CoreDX DDS logging is described in Part 4:Chapter
14CoreDX DDS Logging.

CoreDX DDS Programmer’s Guide

132

13.3.14 OWNERSHIP

The Ownership QoS policy controls whether CoreDX DDS will allow multiple
DataWriters to update the same instance. The possible values for
OwnershipareShared and Exclusive. When set to Shared, CoreDX DDS does
not enforce unique ownership for each instance, and multiple DataWriters
can update the same instance (DataReaders will receive the data written by
all mached DataWriters). When set to Exclusive, each instance can be
modified only by one DataWriter. In this case, one DataWriter “owns” each
instance, and while that DataWriter is “alive”,matched DataReaders will
only accept samples on an instance written by the instance owner.

A DataReader may automatically change the owner of an instance to a
different DataWriter. This will happen if the current owner misses a
deadline or is otherwise considered to be not actively writing on the
instance. The DataReader will then assign ownership to the active
DataWriter with the next highest strength.

This is a QoS policy that must be compatible before DataReaders and
DataWriters will match. The DataReader and DataWriter Ownerships must
match before the DataWriter and DataReader will communicate. If the
Ownershipisnot compatible, CoreDX DDS will generate an IncompatibleQos
status (see the Communication Status chapter for additional information).

13.3.15 OWNERSHIP_STRENGTH

The Ownership Strength QoS policy is applicable only when the Ownership
QoS policy is set to Exclusive. Each DataWriter can set its Strengthwith this
QoS setting. This strength is used to determine which DataWriter’s updates
will be received used the subscribing application when more than one
DataWriter is writing on that instance.

13.3.16 PARTITION

The Partition QoS policy allows the application to define logical partitions in
a DDS domain. In order for a DataReader to see data published by a
DataWriter, their Partitions must match. A Partition is a string that may
contain a ‘*’ wildcard. Entities may define (and be part of) multiple
partitions. The empty string (“”) is a valid partition, and will match only
another empty string or ‘*’ wildcard partition.

This is a QoS policy that must be compatible before DataReaders and
DataWriters will match. If the Partitions do not match, CoreDX DDS will

133

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

generate an IncompatibleQos status (see the Communication Status chapter
for additional information).

13.3.17 PEER_PARTICIPANT (CoreDX DDS Extension)

The PeerParticipant QoS policy contains a list of peer DomainParticipants.
This configuration can be used as an alternative or in addition to the
standard automatic and dynamic discovery. More information on
configuring the PeerParticipant QoS policy can be found in Part 4:16.4Static
Discovery.

13.3.18 PRESENTATION

The Presentation QoS policy controls the extent to which published data
changes are dependent on each other. The possible values for Presentation
are coherent access and ordered access. In addition, there is an additional
configuration item: Access Scope.

When Presentation is configured as coherent access, CoreDX DDS will
preserve groupings of changes made by the publishing application between
calls to the begin_coherent_change() and end_coherent_change()
operations. When Access Scope is set to INSTANCE, the scope for grouping
changes is within each individual instance. In this case, calls to
begin_coherent_change() and end_coherent_change() have no effect.
When Access Scope is set to TOPIC, then coherent changes made by a
DataWriter will be preserved and made available as a set to each
DataReader. When Access Scope is set to GROUP, coherent changes made
by all DataWriters attached to a Publisher will be preserved and made
available to each Subscriber.

When Presentation is configured as ordered access, CoreDX DDS will
preserve the order of changes made by the publishing application, in
accordance with the setting of Access Scope. When Access Scope is set to
INSTANCE, changes to an instance are unordered relative to other instances.
When Access Scope is set to TOPIC, changes made by a single DataWriter
are made available to DataReaders in the same order in which they
occurred. When Access Scope is set to GROUP, changes made by all
DataWriters attached to a Publisher are made available to Subscribers in the
same order in which they occurred.

Note that while changes are preserved by CoreDX DDS and made available
to the DataReaders or Subscribers in order, the application must make the

CoreDX DDS Programmer’s Guide

134

appropriate calls to the DataReader or Subscriber in order to see the data in
the desired order.

This is a QoS policy that must be compatible before DataReaders and
DataWriters will match.

13.3.19 PROPERTY

The Property QoS policy is part of the ParticipantQoSPolicy structure and
allows the application to flexibly define name/value pairs. Currently,
CoreDX DDS uses the Property QoS policy only for configuration of the
CoreDX DDS Security Plug-ins.

The Property QoS policy contains a sequence of properities, each one
containing a name, value, and propogate_flag.

The propogate_flag determines if the information is shared during
participant discovery.Depending on the application use of the Property QoS
policy, this information may or may not need to be shared to peers during
DDS discovery. One reason not to propogate these properties is to keep the
size of discovery data small (network and memory utilization). When
CoreDX DDS Secure is used, the Property QoS policy contains security
configuration specific to this DomainParticipant that has no meaning to
peers and could potentially leak sensitive information if shared on the
network.

13.3.20 READER_DATA_LIFECYCLE

The Reader Data Lifecycle QoS policy controls the behavior of the
DataReader with regard to the data it has received and is maintaining. A
DataReader internally maintains data samples it has received until they have
been ‘taken’ by the application according to History and Resource Limits
QoS policy settings. A DataReader will maintain information for an instance,
even when the associated DataWriter is no longer alive, until the application
has “taken” all samples for that instance.

The Reader Data Lifecycle QoS policy offers some memory usage protection
to the application, by allowing CoreDX DDS to release resources for
instances, even if the application neglects to “take” all samples for these
instances. This QoS policy offers two configuration items. The autopurge
nowriter samples delay configuration item defines the amount of time the
DataReader will maintain information for an instance once it becomes
NOT_ALIVE_NO_WRITERS (there are no live writers writing this instance).

135

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

The autopurge disposed samples delay configuration item defines the
amount of time the DataReader will maintain information for an instance
once it becomes NOT_ALIVE_DISPOSED (a writer has disposed this
instance). CoreDX DDS may reclaim an instance on a DataReader when the
instance state is NOT_ALIVE_NO_WRITERS and there are no samples
associated with the instance.

13.3.21 RELIABILITY

The Reliability QoS policy configures the level of reliability CoreDX DDS will
guarantee for communications between a DataReader and DataWriter. The
possible configuration for ReliabilityareBest Effort, Reliable, and ACK-less
Reliable.

With a Best Effort configuration, CoreDX DDS will operate in a “fire and
forget” mode, making an effort to deliver all published data, with no
guarantee all data will be received by all matched DataReaders. It is
important to note that on reliable physical networks, with enough
bandwidth to support published data, it is rare to have dropped or missed
samples in this mode. DDS applications publishing periodic data with high
data rates can see better performance with minimal to no data loss using a
Best Effort configuration.

With a Reliable configuration, CoreDX DDS will use an additional reliability
protocol to check if written samples are received, and possibly resend them
if necessary. The Reliable configuration may be used in combination with
the History and Resource Limits QoS policies to guarantee all published data
will be received by all matched DataReaders. This configuration requires
more resources and overhead to fulfill. The History and Resource Limits
QoS policies will determine the amount of resources CoreDX DDS will
maintain in order to meet Reliable requirements. If configured resource
limits are met, the publishing application may block on a write() operation.

With an ACK-less Reliable configuration, CoreDX DDS will use a lighter-
weight version of the Reliability protocol that uses negative
acknowledgements, but no positive acknowledgments.

Additional information about using and configuring the Reliability QoS policy
can be found inPart 4:Chapter 17Configuring Reliability Protocol.

This is a QoS policy that must be compatible before DataReaders and
DataWriters will match. A ReliableDataWriter will match any DataReader,

CoreDX DDS Programmer’s Guide

136

Best Effort or Reliable. A Best Effort DataWriter will match only Best Effort
DataReaders.

13.3.22 RESOURCE_LIMITS

The Resource Limits QoS policy configures the resources CoreDX DDS can
use in order to meet the requirements imposed by the application and
other QoS settings (including History, Durability, and Reliability). The
Resources Limits that can be configured include: the total number of
samples (max_samples), the total number of instances (max_instances), and
the number of samples in each instance (max_samples_per_instance).

CoreDX DDS DataReaders and DataWriters will not store more samples or
instance than is specified by their Resource Limits QoS policies. This
provides a convenient mechanism to constrain the amount of memory a
CoreDX DDS application will use for application data. It also allows CoreDX
DDS to pre-allocate memory resources, which can result in better
performance.

The Resource Limits QoS policy provides a hard limit for the number of
samples or instances that can be stored by a DataReader or DataWriter.
The configuration of other QoS Policies: Reliability, Durability, and History
determine the behavior of DataReaders and DataWriters when their
Resource Limits are met.

For additional information, refer to the 10.5Data Cache section, as well as
the sections for these specific QoS policies: 13.3.21RELIABILITY,
13.3.3DISCOVERY (CoreDX DDS Extension)

The Discovery policy allows the tailoring of DomainParticipant discovery
aspects, including configuration of the built-in DataReaders and
DataWriters. Details on the various configuration items contained in the
Discovery QoS policy are described in Part 4:Chapter 16CoreDX
DDSDiscovery.

DURABILITY, and 13.3.9HISTORY.

It is possible for a DataWriter to publish data samples (and instances) faster
than a DataReader is consuming them, causing the DataReader to fill up its
Data Cache to its configured Resource Limits. This could be with respect to
samples (max_samples or max_samples_per_instance) or instances
(max_instances). With the right combination of QoS policies (specifically,
Reliable Reliability and Keep All History), published samples will be stored by

137

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

the DataWriter until all DataReaders can accept them. The DataWriter’s
Cache of data samples will continue to grow until it meets the configured
Resources Limits. When this occurs, CoreDX DDS will return an error on the
next call to write() (or dispose() or register_instance()). The application may
block first, depending on the configuration of the Reliability blocking time.
This is a configuration where one ‘slow’ DataReader can effectively prevent
the DataWriter from publishing any new data, affecting all other
DataReaders matched to that DataWriter.

The CoreDX DDS constant DDS::LENGTH_UNLIMITED is used to indicate the
absence of a particular limit.

The max_samples and max_samples_per_instance settings must be
consistent such that max_samples >= max_samples_per_instance.In other
words, if max_samples is set (not LENGTH_UNLIMITED), then
max_samples_per_instance must also be set (to a value <= max_samples).

In addition, the max_samples_per_instance setting must be consistent with
the Historydepth, such that depth <= max_samples_per_instance. If there is
an error in these settings, a create_datareader() or create_datawriter()
operation will fail. A set_qos() operation will return the error
DDS::RETCODE_INCONSISTENT_POLICY.

13.3.23 RTPS READER (CoreDX DDS Extension)

The RTPS Reader QoS policy allows the application to tailor various aspects
of the DDS wire protocol for this particular DataReader. These control
options include Reliability timing and behavior, data batching, and if
typecode should be transmitted for discovery purposes.

Additional information about these control options can be found in the
following sections:

 Reliability: Part 4:Chapter 17 - Configuring Reliability Protocol

 Data Batching:Part 4:Chapter 23 - Data Batching

 Typecode: Part 4:Chapter 16 - CoreDX DDSDiscovery and the
CoreDX DDS Type System Programmer’s Guide

CoreDX DDS Programmer’s Guide

138

13.3.24 RTPS WRITER (CoreDX DDS Extension)

The RTPS Writer QoS policy allows the application to tailor various aspects
of the DDS wire protocol for this particular Data Writer. These control
options include Reliability timing and behavior paramters, data batching,
filtering behavior, transmit buffer size and behavior, and if typecode should
be transmitted for discovery purposes.

Additional information about these control options can be found in the
following sections:

 Reliability: Part 4:Chapter 17 - Configuring Reliability Protocol

 Data Batching:Part 4:Chapter 23 - Data Batching

 Content Filters:Part 3:9.3 - Content Filtered Topics

 Transmit Buffers:Part 4:Chapter 21 - Transmit Buffers

 Typecode: Part 4:Chapter 16 - CoreDX DDSDiscovery and the
CoreDX DDS Type System Programmer’s Guide

13.3.25 THREAD MODEL (CoreDX DDS Extension)

The Thread ModelQoS policy allows the application to control the number
of threads created and used by CoreDX DDS. CoreDX DDS can run in single
threaded or multithreaded modes. This is described further in the Part
4:Chapter 20: Threading Options section.

13.3.26 TIME_BASED_FILTER

The Time Based Filter QoS policy allows the application to indicate a
particular DataReader does not necessarily want to see all data samples
published for a Topic. In fact, the DataReader would to see, for each
instance, at most one data sample every n time period. This time period is
the minimum_separation for the Time Based Filter.

Using the Time Based Filter QoS policy can reduce the amount of data
written by a DataWriter. This is particularly useful in situations where a
DataReader cannot keep up with the amount of data published, or where
some DataReaders simply do not need all the intermediate data samples
published on a Topic.

139

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

The Time Based Filterminimum_separation must be consistent with the
Deadlineperiod. Setting a period<minimum_separation is an error. A
create_datareader() operation will fail. A set_qos() operation will return the
error DDS::RETCODE_INCONSISTENT_POLICY.

13.3.27 TOPIC_DATA

The Topic Data QoS policy allows the application to attach additional
information to created Entityobjects. This data is not used by CoreDX DDS,
and because CoreDX DDS does not support the DCPSTopic built-in topic, this
information is not shared during discovery. For more information, see the
9.2Built-In Topicssection.

13.3.28 TRANSPORT_PRIORITY

CoreDX DDS does not currently support this QoS policy.

13.3.29 USER_DATA

The User Data QoS policy allows the application to attach additional
information to created Entityobjects. This data is not used by CoreDX DDS,
and is made available to the application by the Built-in Topics, along with
other discovery information. For more information, see the 9.2Built-In
Topicssection.

13.3.30 WRITER_DATA_LIFECYCLE

The Writer Data Lifecycle QoS policy controls the behavior of the
DataWriter with regard to the data it has published and is maintaining. This
QoS policy allows the application to configure CoreDX DDS to automatically
dispose instances when they are unregistered (see the 10.4Instance
Lifecyclesfor additional information).

The Writer Data Lifecycle QoS policy contains one configuration items:
auto-dispose unregistered instances (autodispose_unregistered_instances).
Setting this configuration item to TRUE causes the DataWriter to dispose the
instance each time it is unregistered. Setting this configuration item to
FALSE will not automatically dispose instances when they are unregistered.

When a DataWriter is deleted, all instances managed by the DataWriter are
automatically unregistered. Therefore, only setting the auto-dispose

CoreDX DDS Programmer’s Guide

140

unregistered instances configuration item will ensure the instances
managed by a DataWriter are disposed.

141

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Chapter 14 Communication Status

The DDS infrastructure keeps track of a number of statuses and statistics
related to data communications. The application may choose to be made
aware of some, all, or none of these statuses and statistics.

Each DDS entity has its relevant statuses, as listed in Table 14-1.

Table 14-1: Communication Statuses

Entity Status Name Description

Topic INCONSISTENT_TOPIC Another, different, Topic exists with
the same name as this Topic, but a
different data type (if type
information is shared for discovery),
or different data type name.

Subscriber DATA_ON_READERS New data has been received on one
or more DataReaders associated with
this Subscriber, and is available for
the application to read() or take().

DataReader SAMPLE_REJECTED A received sample has been rejected
because of RESOURCE_LIMITS QoS
setting has been reached or
exceeded. The sample has been
‘seen’ by the DDS middleware at the
subscribing application, but could not
be stored. The DataWriter will not
re-transmit this sample. The sample
is not available to the subscribing
application.

 LIVELINESS_CHANGED One or more DataWriters that were
writing data this DataReader was
reading has changed its liveliness
(becoming active or inactive).

CoreDX DDS Programmer’s Guide

142

Entity Status Name Description

 REQUESTED_DEADLINE_MISSED A data update for an instance was
not received in the expected time
interval (configured in the Deadline
QoS Policy). Because the offered
deadline (DataWriter) must be <= the
requested deadline (DataReader), it
is possible for a DataWriter’s
OFFERED_DEADLINE_MISSED status
may be triggered, when the
DataReader’s
OFFERED_DEADLINE_MISSED status
is NOT triggered.

 REQUESTED_INCOMPATIBLE_QOS A DataWriter was discovered whose
Topic matches this DataReader, but
whose QoS is incompatible with this
DataReader.

 DATA_AVAILABLE New data is now available to be read.

 SAMPLE_LOST A sample was lost (never received).
This may be because the sample was
dropped by the network (with
BEST_EFFORT reliability) or because
the DataWriter no longer has this
sample to re-transmit (with RELIABLE
reliability).

 SUBSCRIPTION_MATCHED A DataWriter has been discovered
that matches the Topic of this
DataReader and has a compatible
QoS (or a DataWriter that was
previously matched is no longer
matched).

DataWriter LIVELINESS_LOST The liveliness specified in the
LIVELINESS QoS was not respected,
and DataReaders will consider this
DataWriter no longer active.

143

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Entity Status Name Description

 OFFERED_DEADLINE_MISSED A data update was not received in
the expected time interval
(configured in the Deadline QoS
Policy). Because the offered deadline
(DataWriter) must be <= the
requested deadline (DataReader), it
is possible for a DataWriter’s
OFFERED_DEADLINE_MISSED status
may be triggered, when the
DataReader’s
OFFERED_DEADLINE_MISSED status
is NOT triggered.

 OFFERED_INCOMPATIBLE_QOS A DataReader was discovered for the
same Topic as this DataWriter, but
the QoS requested by that
DataReader was incompatible with
this DataWriter’s QoS.

 PUBLICATION_MATCHED A DataReader has been found that
matches the Topic and Qos of this
DataWriter (or a DataReader that
was previously matched is no longer
matched).

Some communication statuses are associated with data being available for
the subscribing application. These are referred to as read communication
statuses, and include: DATA_ON_READERS and DATA_AVAILABLE. Since
these two statuses indicate the reception of data (the real purpose for a
Data Distribution Service) they treated a little differently from the other
communication statuses, referred to as plain communication statuses.

14.1 Communication Status Details

Each communication status is described in detail below.

CoreDX DDS Programmer’s Guide

144

14.1.1 Inconsistent Topic Status

The Inconsistent Topic Status is used to inform the application that another
Topic has been registered in the Domain (and Partition, if defined) that has
the same name as this Topic, but a different data type (if data types are
used for matching) or a different data type name. The CoreDX DDS
middleware will allow an application to create multiple Topics of the same
name and different types. The Inconsistent Topic Status allows applications
to be made aware of these inconsistencies.

Type: Plain Communication Status

Associated Entity: Topic

Mask Name: INCONSISTENT_TOPIC_STATUS

Struct Type Name: InconsistentTopicStatus

Figure 14-1: Inconsistent Topic Status Structure

14.1.2 Data On Readers Status

The Data On Readers Status is one of the read communication statuses, and
is used to inform the application that one or more of the DataReaders
attached to a Subscriber has new data samples or sample information.

The Data Available Status and Data On Readers Status are communicated to
the application together. In other words, if there is Data Available for a
DataReader, then there is a DataReader with new data.

Type: Read Communication Status

Associated Entity: Subscriber

Mask Name: DATA_ON_READERS_STATUS

Struct Type Name: N/A

145

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

14.1.3 Sample Rejected Status

The Sample Rejected Status is used to inform the application that a data
sample was not accepted by the DataReader because of resources limits and
history configured in the associated QoS (on the effected DataReader). The
HISTORY QoS allows the application to configure the behavior of DDS when
the DataReader cache is full. With a configuration of KEEP_ALL, the
middleware may not remove existing samples to make room for the new
sample, and this has the potential to trigger a Sample Rejected Status. The
RESOURCE_LIMITS QoS allows the application to set a limit on the total
number of samples, the total number of instances, and the number of
samples per each instance kept by the CoreDX DDS middleware. If a
DataReader receives a sample that would put any of these numbers over
their set limit, and History is configured to KEEP_ALL, the sample is rejected
(not added to the reader cache), and the appropriate count on the Sample
Reject Status is updated.

Because the sample was ‘seen’ by the DataReader, the sending DataWriter
will not retransmit it (even when Reliability = RELIABLE). The application will
not be able to access this sample.

Type: Plain Communication Status

Associated Entity: DataReader

Mask Name: SAMPLE_REJECTED_STATUS

Struct Type Name: SampleRejectedStatus

CoreDX DDS Programmer’s Guide

146

Figure 14-2: Sample Rejected Status Structure

14.1.4 Liveliness Changed Status

The Liveliness Changed Status is used to inform the application of changes
to DataWriters known by this DataReader. DataReaders keep track of all
DataWriters they are ‘matched’ with. These matched DataWriters may be
ACTIVE (they are either actively writing data or otherwise asserting their
liveliness) or INACTIVE (they are not actively writing or asserting their
liveliness). Any time one of the DataWriters this DataReader is matched
with changes between these states, the Liveliness Changed Status is
updated.

Type: Plain Communication Status

Associated Entity: DataReader

Mask Name: LIVELINESS_CHANGED_STATUS

Struct Type Name: LivelinessChangedStatus

147

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Figure 14-3: Liveliness Changed Status Structure

14.1.5 Requested Deadline Missed Status

The Requested Deadline Missed Status is used to inform the application
when a deadline period specified in an associated Deadline QoS (either
Topic or DataReader) was missed. The REQUESTED_DEADLINE Qos allows
the application to request that an instance be updated at least once every
time interval specified by the QoS. When a DataWriter fails to update an
instance within the time interval specified by the DataReader’s Deadline
QoS policy, the Requested Deadline Missed Status is updated.

Type: Plain Communication Status

Associated Entity: DataReader

Mask Name: REQUESTED_DEADLINE_MISSED_STATUS

Struct Type Name: RequestedDeadlineMissedStatus

CoreDX DDS Programmer’s Guide

148

Figure 14-4: Requested Deadline Missed Status Structure

14.1.6 Requested Incompatible QoS Status

The Requested Incompatible QoS Status is used to inform the application
that a DataWriter was discovered with a matching Topic and matching data
type, but with QoS incompatible to this DataReader’s requested QoS. For
additional information about compatible and incompatible QoS, see the
Quality of Service Features chapter.

Type: Plain Communication Status

Associated Entity: DataReader

Mask Name: REQUESTED_INCOMPATIBLE_QOS_STATUS

Struct Type Name: RequestedIncompatibleQosStatus

149

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Figure 14-5: Requested Incompatible QoS Status Structure

14.1.7 Data Available Status

The Data Available Status is one of the read communication statuses (along
with the Data On Readers Status), and is used to inform the application of
new data available to be read on the associated DataReader.

These two read communication statuses are communicated to the
application together. In other words, if there is Data Available for a
DataReader, then there is a DataReader with new data.

Type: Read Communication Status

Associated Entity: DataReader

Mask Name: DATA_AVAILABLE_STATUS

Struct Type Name: N/A

CoreDX DDS Programmer’s Guide

150

14.1.8 Sample Lost Status

The Sample Lost Status is used to inform the application that one or more
data samples werenot received by a Reader. A sample can be ‘lost’ for
many reasons.

For example, the transport might drop the sample due to congestion or
some other reason. If the Reader is using BEST_EFFORT reliability, then
samples dropped by the underlying transport will not be retransmitted, and
they are LOST.

Even if reliability is set to RELIABLE, it is still possible to experience lost
samples due to other QoS settings. For example, if the Writer is configured
to keep very little historical data in its cache (either through HISTORY or
RESOURCE_LIMITS QoS), then it is possible that a Reader will fail to get a
sample simply because the sample is purged from the Writer’s cache before
it could be successfully transmitted to the Reader.

Lost Samples are not available to the subscribing application.

Type: Plain Communication Status

Associated Entity: DataReader

Mask Name: SAMPLE_LOST_STATUS

Struct Type Name: SampleLostStatus

Figure 14-6: Sample Lost Status Structure

151

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

14.1.9 Subscription Matched Status

The Subscription Matched Status is used to inform the application that a
new DataWriter has been discovered that matches this DataReader’s QoS
settings and it is producing data this DataReader is interested in. That is,
the DataWriter is writing data on the same Topic this DataReader is reading
on and its QoS settings are compatible with this DataReader.

Type: Plain Communication Status

Associated Entity: DataReader

Mask Name: SUBSCRIPTION_MATCHED_STATUS

Struct Type Name: SubscriptionMatchedStatus

Figure 14-7: Subscription Matched Status Structure

14.1.10 Liveliness Lost Status

The Liveliness Lost Status is used to inform the application that this
DataWriter has missed asserting its liveliness in the time period specified by
its LIVELINESS QoS policy. The DataWriter’s LIVELINESS QoS policy allows
the publishing application to specify the interval in which this DataWriter

CoreDX DDS Programmer’s Guide

152

will either write a sample or assert its liveliness to all matched DataReaders.
If a DataWriter misses this specified window, the Liveliness Lost Status is
updated.

Type: Plain Communication Status

Associated Entity: DataWriter

Mask Name: LIVELINESS_LOST_STATUS

Struct Type Name: LivelinessLostStatus

Figure 14-8: Liveliness Lost Status Structure

14.1.11 Offered Deadline Missed Status

The Offered Deadline Missed Status is used to inform the application when
a deadline period specified in an associated Deadline QoS (either Topic or
DataWriter) was missed. The OFFERED_DEADLINE Qos allows the
application to commit to updating each instance at least once every time
interval specified by the QoS setting. When the DataWriter fails to update
an instance within the specified time interval, the Offered Deadline Missed
Status is updated.

Type: Plain Communication Status

Associated Entity: DataWriter

Mask Name: OFFERED_DEADLINE_MISSED_STATUS

Struct Type Name: OfferedDeadlineMissedStatus

153

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Figure 14-9: Offered Deadline Missed Status Structure

14.1.12 Offered Incompatible QoS Status

The Offered Incompatible QoS Status is used to inform the application that a
DataReader was discovered with a matching Topic and matching data type,
but with QoS incompatible to this DataWriter’s offered QoS. For additional
information about compatible and incompatible QoS, see the Quality of
Service Features chapter.

Type: Plain Communication Status

Associated Entity: DataWriter

Mask Name: OFFERED_INCOMPATIBLE_QOS_STATUS

Struct Type Name: OfferedIncompatibleQosStatus

CoreDX DDS Programmer’s Guide

154

Figure 14-10: Offered Incompatible QoS Status Structure

14.1.13 Publication Matched Status

The Publication Matched Status is used to inform the application that a new
DataReader has been discovered that matches this DataWriter’s QoS
settings.

Type: Plain Communication Status

Associated Entity: DataWriter

Mask Name: PUBLICATION_MATCHED_STATUS

Struct Type Name: PublicationMatchedStatus

155

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Figure 14-11: Publication Matched Status Structure

14.2 Application Access to Communication Status

An application can access plain communication statuses associated with an
entity by calling that entity’s get_<status_name>() method. For example, a
DataReader will have a get_sample_lost_status() method to obtain a
snapshot of its SampleLostStatus, and a Topic will have a
get_inconsistent_topic_status() method to obtain a snapshot of its
InconsistentTopicStatus.

Read communication status are used to indicate the availability of data. The
data may then accessed by calling the DataReader read() or take() methods.
The application may call read() or take() directly at any time, even if there is
no data available.

While the application can choose to call get_xxx_status(), read(), or take() at
any time, typically the application will wait for notification from the
infrastructure that a status has changed (or data is available) before
accessing the status information or data.

CoreDX DDS Programmer’s Guide

156

There are two mechanisms an application may use to learn about changes in
communication statuses and statistics. The first is listeners, where an
application can asynchronously handle a change in communication statuses.
The second is conditions (using wait sets), where an application can block
waiting for a status change.

14.2.1 Listeners

Listeners provide an asynchronous method for the application to be notified
of changes in statuses. The application provides a hook for the CoreDX DDS
middleware to invoke upon a particular status change. For example, an
application interested in the Data Available Status for its DataReader will
provide an on_data_available() method to the CoreDX DDS middleware, and
the CoreDX DDS middleware will call the provided method when new data is
available on that DataReader.

All DDS entities support a listener, and all listeners have a type specific to
their associated entity. For example, the DataReaderListener is associated
with a DataReader.

Listeners are interfaces. Each listener provides a set of methods that
correspond to the relevant communication statuses for that entity.

Listeners are hierarchical. Figure 14-12: Listener Hierarchy depicts the
hierarchy of all the listeners.

157

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Figure 14-12: Listener Hierarchy

The application must implement an appropriate listener interface in order
to receive communication status changes. The following Table 14-2 depicts
the listener methods for each entity.

CoreDX DDS Programmer’s Guide

158

Table 14-2: Listener Method Signatures

Entity Listener Method Signature

DataReaderListener void on_requested_deadline_missed(DataReader,
RequestedDeadlineMissedStatus);

void on_requested_incompatible_qos(DataReader,
RequestedIncompatibleQosStatus);

voidon_sample_rejected(DataReader, SampleRejectedStatus);

void on_liveliness_changed(DataReader, SampleRejectedStatus);

void on_data_available(DataReader);

void on_subscription_matched(DataReader,
SubscriptionMatchedStatus);

void on_sample_lost(DataReader, SampleLostStatus);

SubscriberListener void on_data_on_readers(Subscriber);

(inherits all DataReaderListener methods)

TopicListener void on_inconsistent_topic(Topic, InconsistentTopicStatus);

DataWriterListener void on_liveliness_lost(DataWriter, LivelinessLostStatus);

void on_offered_deadline_missed(DataWriter,
OfferedDeadlineMissedStatus);

void on_offered_incompatible_qos(DataWriter,
OfferedIncompatibleQosStatus);

void on_publication_matched(DataWriter,
PublicationMatchedStatus);

PublisherListener (inherits all DataWriterListener methods)

DomainParticipantListener (inherits all SubscriberListener, PublisherListener, and
TopicListener methods)

159

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Notice that the listener methods for plain communication statuses follow
the same format: they return a void and take the entity and appropriate
status as arguments. The listener methods for read communication
statuses are a little different. Read communication statuses do not have
associated status structures. The only argument is the concerned
DataReader (for the on_data_available() method) and Subscriber (for the
on_data_on_readres() method). It is assumed that in handling the read
communication status, the application intends to eventually read the
available data, and providing the appropriate DataReader or Subscriber
allows the application to do this.

The application may use all, some, or none of the listener methods for an
Entity. For example, an application may only be interested in the
DataReader’s data_available status, and implement only the
on_data_availablel() listener method. When the application attaches a
listener to an entity, it must also set a mask that indicates which listener
methods are enabled within this listener.

14.2.1.1 Listener Access to Plain Communication Statuses

Notice inFigure 14-12 that the listeners form a hierarchy. When a plain
communication status changes, the middleware will invoke the most
specific relevant listener method that is enabled.

For example, consider the PublicationMatchedStatus. The corresponding
on_publication_matched() listener method comes from the
DataWriterListener, and is inherited by the PublisherListener and the
DomainParticipantListener. When there is a change to the
PublicationMatchedStatus, the DDS infrastructure will look for an enabled
on_publication_matched() listener method to invoke. It will look at the
DataWriterListener first. If there is not an enabled
on_publication_matched() listener method, it will then look at the
PublisherListener. If there is not an enabled on_publication_matched()
listener method, it will look at the DomainParticipantListener. The first
enabled listener method will be invoked. If there are no listeners enabled,
no listener methods will be invoked. The status is still available and may
trigger a configured Condition, or be accessed by calling the associated
get_xxx_status().

14.2.1.2 Listener Access to Read Communication Statuses

The read communication status listeners are invoked differently than plain
communication status listeners. The two read communication statuses

CoreDX DDS Programmer’s Guide

160

constitute the real purpose of the Data Distribution Service, and require
special consideration.

Each time a read communication status changes the DDS perform the
following actions.

1. The infrastructure will attempt to invoke the on_data_on_readers()
method on the SusbscriberListener with a parameter of the related
Subscriber

2. If this doesn’t work (either there was no listener installed or the
method was not enabled via the listener mask), the DDS
middleware will attempt to trigger the on_data_available() method
on the related DataReaderListener with a parameter of the related
DataReader.

14.2.1.3 Nil Listeners

The application can choose to install a nil listener in place of any listener
method. When the infrastructure finds a nil listener, it will perform a NO-
OP operation and stop looking for enabled listener methods.

14.2.1.4 Implementing Listeners in C

Listeners in C are implemented as a structure of function pointers. In order
to implement a listener method, the application must write a function, and
then assign it to the appropriate listener function pointer.

For example, a DataReader interested in only the DATA_AVAILABLE status
might do the following:

on_data_available Listener

void my_on_data_available(DDS_DataReader dr)
{
Printf(―Data is available!\n‖);
 /* process data by calling DDS_DataReader_read()
 * or DDS_DataReader_take()
 */
}

DDS_DataReaderListener drListener =
{
 NULL, NULL, NULL, NULL,
 my_on_data_available,
 NULL, NULL
}

161

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

/* when we create the DataReader */
Dr = DDS_Subscriber_create_datareader(sub,

DDS_Topic_TopicDescription(topic), &drListener,

DDS_DATA_AVAILABLE_STATUS);

Figure 14-13: Listener Example C Code

The last argument to the create_datareader() method is the listener status
mask, telling the DDS middleware which listener methods are enabled.

In C, a nil listener is installed simply by setting the appropriate function
pointer to NULL, and then setting that status in the listener mask. Suppose
in the above example, the listener mask used in the create_datareader() call
was:

DDS_DATA_AVAILABLE_STATUS |

DDS_LIVELINESS_CHANGED_STATUS

Then there would be a nil listener installed for the on_liveliness_changed()
method, and an actual listener installed for the on_data_available() method.
All other listener methods would default “down” the listener hierarchy,
looking for enabled corresponding listener methods on the Subscriber, and
then the DomainParticipant.

The definition of all the C listeners can be found in the CoreDX DDS header
file (DDS_HOME/include/dds/core/dds.h or dds.hh).

14.2.1.5 Implementing Listeners in C++

Listeners in C++ are classes containing virtual on_<communication_status>()
methods. In order to implement a listener method, the application must
create a listener class that derives from the appropriate virtual listener
class, and then implement the desired listener method.

For example a DataReader who is only interested in the DATA_AVAILABLE
status might do the following:

on_data_available Listener

class MyDRListener : public DataReaderListener
{
 public:

CoreDX DDS Programmer’s Guide

162

 void on_data_available(DataReader * dr);
};

void MyDRListener::on_data_available(DataReader * dr)
{
printf(―Data Available!\n‖);
 /* process data by calling read() or take()
 */
}

/* when we create the DataReader */
MyDRListener drListener;
Dr = sub->create_datareader((TopicDescription*)topic,

DATAREADER_QOS_DEFAULT, &drListener, DATA_AVAILABLE_STATUS);

Figure 14-14: Listener Exampe C++ Code

To install a nil listener in C++, use the nil_listeners member on the
appropriate listener object. For example, to add a nil listener for the
on_liveliness_changed() listener method:

drListener . nil_listeners = LIVELINESS_CHANGED_STATUS;

This indicates to the DDS middleware that the on_liveliness_changed()
listener method should be treated as a nil listener method.

14.2.1.6 Implementing Listeners in C#

Listeners in C# are classes that may be used as a base class for application
data specific Listeners. In order to implement a listener method, the
application must create a listener class that derives from the appropriate
listener base class, and then implement the desired listener method.

For example a DataReader who is only interested in the DATA_AVAILABLE
status might do the following:

on_data_available Listener

class MyDRListener : DataReaderListener
{
PublicMyDRListener()

 {

this.on_requested_deadline_missed = null;

this.on_requested_incompatible_qos = null;

this.on_sample_rejected = null;

this.on_liveliness_changed = null;

this.on_data_available = data_available;

163

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

this.on_subscription_matched = null;

this.on_sample_lost = null;

 }

public void data_available(DataReaderdr)
{
System.Console.WriteLine(―Data Available!\n‖);
 /* process data by calling read() or take()
 */
}

/* when we create the DataReader */
MyDRListener drListener = new MyDRListener();
Dr = sub->create_datareader(topic, DDS.DATAREADER_QOS_DEFAULT,

drListener, DDS.DATA_AVAILABLE_STATUS);

The last argument to the create_datareader() method is the listener status
mask, telling the DDS middleware which listener methods are enabled.

In C#, a nil listener is installed simply by setting the appropriate function
pointer to NULL, and then setting that status in the listener mask. Suppose
in the above example, the listener mask used in the create_datareader() call
was:

DDS.DATA_AVAILABLE_STATUS |

DDS.LIVELINESS_CHANGED_STATUS

Then there would be a nil listener installed for the on_liveliness_changed()
method, and an actual listener installed for the on_data_available() method.
All other listener methods would default “down” the listener hierarchy,
looking for enabled corresponding listener methods on the Subscriber, and
then the DomainParticipant.

14.2.1.7 Implementing Listeners in Java

Listeners in Java are interfaces containing empty
on_<communication_status>() methods. In order to implement a listener
method, the application must create a listener class that implements the
appropriate listener interface, and then create public versions of all listener
methods. Listener methods may be empty.

For example a DataReader who is only interested in the DATA_AVAILABLE
status might do the following:

CoreDX DDS Programmer’s Guide

164

on_data_available Listener

class MyDRListener implements DataReaderListener

{

 public long get_nil_mask() { return 0; }

 public void on_data_available(DataReader dr)

 {

 System.out.println(" DATA AVAILABLE ");

 /* process data by calling read() or take()*/
}

 public void on_requested_deadline_missed(DataReader dr,

RequestedDeadlineMissedStatus status) { };

 public void on_requested_incompatible_qos(DataReader dr,

RequestedIncompatibleQosStatusstatus) { };

 public void on_sample_rejected (DataReader dr,

SampleRejectedStatusstatus) { };

 public void on_liveliness_changed (DataReader dr,

LivelinessChangedStatusstatus) { };

 public void on_subscription_matched (DataReader dr,

SubscriptionMatchedStatusstatus) { };

 public void on_sample_lost(DataReader dr,

SampleLostStatusstatus) { };

/* when we create the DataReader */
DataReaderListener dr_listener = new MyDRListener();

dr = sub.create_datareader(topic, DDS.DATAREADER_QOS_DEFAULT,

drListener, DDS.DATA_AVAILABLE_STATUS);

To install a nil listener in Java, implement the get_nil_maks() method on the
appropriate listener object to return the corresponding status. For
example, to add a nil listener for the on_liveliness_changed() listener
method:

public long get_nil_mask() { return

DDS.LIVELINESS_CHANGED_STATUS; }

This indicates to the DDS middleware that the on_liveliness_changed()
listener method should be treated as a nil listener method.

14.2.2 Conditions and WaitSets

The listener notification method is asynchronous. Conditions and WaitSets
provide a wait-based mechanism to be notified of changes in the CoreDX

165

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

DDS infrastructure. In general, the application using Conditions and
WaitSets will use the following pattern.

1. The application indicates which statuses it is interested in by
obtaining or creating one or moreCondition objects and attaching
them to a WaitSet.

2. The application waits on the WaitSet until the trigger value of one
or more of the attached Condition objects becomes TRUE.

3. The application calls get_status_changes() to determine the what
changed.

4. The application calls the appropriate
get_<communication_status>(), read(), or take() method(s).

Conditions are always used in combination with a WaitSet. The Condition
contains a trigger value that is set when there is a change (change in
communication status, change in read status, for example). The WaitSet
blocks the application until the Condition’s trigger value is set (or until an
application-defined timeout is reached). There are different kinds of
Conditions available for the application to use. These are described in the
sections below.

14.2.2.1 StatusConditions

StatusConditions allow the application to access plain communication
statuses. A Condition can be obtained from each entity that contains a
communication status, by using the get_status_condition() operation.

A StatusCondition contains a mask of enabled statuses. Similar to the
listener mask, this mask allows the application to tailor the Condition to
trigger only for specific status changes. For example, a DataWriter contains
four statuses: liveliness_lost, offered_deadline_missed,
offered_incompatible_qos, and publication_matched. The StatusCondition
returned from DataWriter::get_statuscondition() will have all four statuses
enabled by default. If any one of these statuses changes for the DataWriter,
the Condition will be set, and the application waiting on the corresponding
WaitSet will be signaled. The application can use the enabled statuses mask
to enable only the communications statuses that are of interest to the
application.

14.2.2.2 ReadConditions and QueryConditions

ReadConditions and QueryConditions allow the application to be notified
when data is available. Specifically, these Conditions allow the application
to be notified when a specific kind of data is available. The ReadCondition

CoreDX DDS Programmer’s Guide

166

allows the application to configure the view_states, instance_states, and
sample_states that the ReadCondition should trigger on. The
QueryCondition allows the application to define the content of the data
samples that should trigger the QueryCondition. This is done using an sql-
like query string.

14.2.2.3 Guard Conditions

GuardConditions allow the application to control triggering the condition.
GuardConditions are not attached to a CoreDX DDS entity (DataReader,
Topic, etc), rather they can be used by the application for synchronization
efforts outside the DDS middleware. Because these conditions are not
attached to a CoreDX DDS entity, they are created by using the
GuardCondition__alloc() operation (C interface), or the GuardCondition
constructor (C++, C#, Java interfaces). The application is responsible for
releasing the GuardCondition memory.

14.2.2.4 Implementing Conditions in C

Condition Examples

/* Variabled used in sample code */

DDS_DataReader dr;

DDS_StatusMask sm;

DDS_StatusCondition sc;

DDS_ReadCondition rc;

DDS_WaitSet ws;

DDS_ConditionSeq active_conditions;

DDS_Duration_t timed;

DDS_ReturnCode_t retval;

/* Create DomainParticipant, register data type,

 * create Topic, Subscriber – code not shown here.

*/

/* Create DataReader with no Listeners */

dr = DDS_Subscriber_create_datareader(sub,

 DDS_TopicDescription(topic),

 DDS_DATAREADER_QOS_DEFAULT,

 NULL, 0);

/* Get the StatusCondition, configure to only trigger on

 * subscription matched status changes

167

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

 */

sc = DDS_DataReader_get_statuscondition(dr);

sm = DDS_SUBSCRIPTION_MATCHED_STATUS;

retval = DDS_StatusCondition_set_enabled_statuses(sc, sm);

/* Create the ReadCondition, configure to trigger

 * only on samples not yet read

 */

rc = DDS_DataReader_create_readcondition(dr,

 DDS_NOT_READ_SAMPLE_STATE,

 DDS_ANY_VIEW_STATE,

 DDS_ANY_INSTANCE_STATE);

/* Create a WaitSet and attach all my conditions */

ws = DDS_WaitSet__init(DDS_WaitSet__alloc());

retval = DDS_WaitSet_attach_condition(ws, sc);

retval = DDS_WaitSet_attach_condition(ws, rc);

/* Wait for something to happen (no timeout) */

INIT_SEQ(active_conditions);

timed.sec = 0; /* infinite */

timed.nanosec = 0;

retval = DDS_WaitSet_wait(ws, &active_conditions, &timed);

/* Something woke us up -- check */

for (i=0 ; i<seq_get_length(&active_conditions) ; i++)

{

 if (active_conditions._buffer[i] == (DDS_Condition)sc)

 {

 /* If you don‟t already know what entity this

 * StatusCondition is attached to, here‟s how

 * to find out.

 */

 DDS_Entity e = DDS_StatusCondition_get_entity(sc);

 DDS_DataReader r = (DDS_DataReader)e;

 DDS_StatusMask s = DDS_DataReader_get_status_changes(r);

 if (s& DDS_SUBSCRIPTION_MATCHED_STATUS)

 /* Handle subscription match */

 }

 else if (active_conditions._buffer[i] == (DDS_Condition)rc)

 {

 /* handle data available on our DataReader „dr‟ */

 }

}

/* Cleanup */

retval = DDS_DataReader_delete_readcondition(dr, rc);

CoreDX DDS Programmer’s Guide

168

Figure 14-15: Condition Example C code

14.2.2.5 Implementing Conditions in C++

Condition Examples

using namespace DDS;

/* Variabled used in sample code */

DataReader * dr;

StatusMask sm;

StatusCondition * sc;

ReadCondition * rc;

WaitSet ws;

ConditionSeq active_conditions;

Duration_t timed;

ReturnCode_t retval;

/* Create DomainParticipant, register data type,

 * create Topic, Subscriber – code not shown here.

*/

/* Create DataReader with no Listeners */

dr = sub->create_datareader((TopicDescription)topic,

 DATAREADER_QOS_DEFAULT,

 NULL, 0);

/* Get the StatusCondition, configure to only trigger on

 * subscription matched status changes

 */

sc = dr -> get_statuscondition();

sm = SUBSCRIPTION_MATCHED_STATUS;

retval = sc -> set_enabled_statuses(sm);

/* Create the ReadCondition, configure to trigger

 * only on samples not yet read

 */

rc = dr -> create_readcondition(NOT_READ_SAMPLE_STATE,

 ANY_VIEW_STATE,

 ANY_INSTANCE_STATE);

/* Create a WaitSet and attach all my conditions */

retval = ws . attach_condition(sc);

retval = ws . attach_condition(rc);

/* Wait for something to happen (no timeout) */

timed.sec = 0; /* infinite */

timed.nanosec = 0;

retval = ws .wait(&active_conditions, &timed);

169

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

/* Something woke us up -- check */

for (i=0 ; i<active_conditions . size() ; i++)

{

 if (active_conditions[i] == (Condition)sc)

 {

 /* If you don‟t already know what entity this

 * StatusCondition is attached to, here‟s how

 * to find out.

 */

 Entity e = sc -> get_entity();

 DataReader r = (DataReader)e;

 StatusMask s = r -> get_status_changes();

 if (s& SUBSCRIPTION_MATCHED_STATUS)

 /* Handle subscription match */

 }

 else if (active_conditions[i] == (Condition)rc)

 {

 /* handle data available on our DataReader „dr‟ */

 }

}

/* Cleanup */

retval = dr -> delete_readcondition(dr, rc);

Figure 14-16: Condition Example C++ code

14.2.3 Using Listeners and Conditions in Combination

The application may choose to use both listeners and conditions in
combination. One way to do this is using listeners for some communication
statuses and using conditions for other communication status. However, if
both listeners and conditions are used for an individual communication
status, the listener method is invoked first and then the condition objects
are signaled. Since calling a listener has the effect of “resetting” the status,
when the Condition is signaled the corresponding status will not be set.

CoreDX DDS Programmer’s Guide

170

171

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Part 4: CoreDX DDS Extensions

This section introduces some CoreDX DDS specific extensions to the DDS
API. These include facilities for logging, transports, licensing, adjusting the
discovery mechanisms, naming DDS entities, and other concepts that make
using DDS easier.

CoreDX DDS Programmer’s Guide

172

173

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Chapter 14 CoreDX DDS Logging

This chapter describes the logging facilities provided by CoreDX DDS and
how to configure them.

First, it should be noted that there are two versions of CoreDX DDS libraries
provided. The first is the optimized, performance focused library which
does not contain the extra logging instrumentation code. This library is
faster and smaller than the instrumented library. This library contains very
little logging, primarily limited to indicating error or anomalous conditions.

The second version of libraries includes a rich set of logging
instrumentation. During application development and debugging, it may be
useful to link against the logging version of the CoreDX DDS libraries. Then,
deployed applications can be linked with the streamlined libraries for
enhanced performance and resource utilization.

For C# and Java users: The coredx_csharp.dll (C#) and coredx_dds.jar (java)
packages refer to the non-logging native library name (dds_csharp.dll/lib for
C# and dds_java.so/dll/lib for java). In order to use the logging versions of
these libraries, these libraries must be renamed (or linked to). For example,
to use the Java logging library under LInux:

% cd ${COREDX_TOP}/target/${TARGET_ARCH}

% ls –l libdds_java*

-rw-r--r-- 1 user grp libdds_java_log.so

-rw-r--r—- 1 user grp libdds_java.so

% mv libdds_java.so libdds_nolog.so

% ln –s libdds_java_log.so libdds_java.so

% ls –l libdds_java*

-rw-r--r-- 1 user grp libdds_java_log.so

-rw-r--r-- 1 user grp libdds_java_nolog.so

-rw-r--r—- 1 user grp libdds_java.so ->

 libdds_java_log.so

Once the application has been linked with the instrumented library, the
logging output can be controlled either by environment variable or by
adjusting the CoreDX_LoggingQosPolicy.

Controlling logging with an environment variable is quick and easy, but does
not offer fine-grained control. The Logging QoS policy offers greater
control.

CoreDX DDS Programmer’s Guide

174

Whichever mechanism is used, the level of logging output is controlled by a
series of bitmapped flags. Each class of log message is enabled by setting a
flag to 1, and is disabled by 0.

The following table lists some of the logging flags available. The full list of
logging flags can be found in
$COREDX_TOP/target/include/dds/coredx_logging.h

Table 14-1: CoreDX DDS Logging Flags

CoreDX DDS Debug Categories and Flags

COREDX_ERROR_LOGGING_QOS 0x0001

COREDX_DATA_LOGGING_QOS 0x0002

COREDX_DISCOVERY_LOGGING_QOS 0x0004

COREDX_FACTORY_LOGGING_QOS 0x0008

COREDX_LIVELINESS_LOGGING_QOS 0x0010

COREDX_STATUS_LOGGING_QOS 0x0020

COREDX_TRANSPORT_LOGGING_QOS 0x0040

COREDX_SCHEDULE_LOGGING_QOS 0x0080

COREDX_HANDSHAKE_LOGGING_QOS 0x0100

COREDX_CACHE_LOGGING_QOS 0x0200

COREDX_SECURITY_LOGGING_QOS 0x0400

COREDX_TRACE_LOGGING_QOS 0x0800

COREDX_RPC_FACTORY_LOGGING_QOS 0x1000

COREDX_RPC_REQUEST_LOGGING_QOS 0x2000

COREDX_RPC_REPLY_LOGGING_QOS 0x4000

Currently, all logging output is directed to stderr. There is an additional field
in the CoreDX_LoggingQosPolicy (uri) that will be used to direct logging
output to other locations, sockets, dds topics, etc in a future CoreDX DDS
release. Currently, this field is unused.

Table 14-2: Logging QoS Configuration Example

Setting CoreDX DDS Logging Flags

 DDS_Subscriber sub;

 DDS_DataReader dr;

DDS_DataReaderQos dr_qos;

175

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

 DDS_Subscriber_get_default_datareader_qos(sub, &dr_qos);

dr_qos.logging.flags |= (COREDX_FACTORY_LOGGING_QOS |

 COREDX_DATA_LOGGING_QOS |

 COREDX_STATUS_LOGGING_QOS);

 dr = DDS_Subscriber_create_datareader(sub, td, &dr_qos, NULL, 0);

CoreDX DDS Programmer’s Guide

176

Chapter 15 CoreDX DDS Transport

The CoreDX DDS transport conforms to the Real-Time Publish-Subscribe
(RTPS) Wire Protocol. This transport does not use a stand-alone transport
daemon, and does not require configuration of any operating system
services.

15.1 Overview

CoreDX DDS includes a modular transport infrastructure that supports
configuration and customization. CoreDX DDS ships with support for UDP
(on IPv4 and IPv6), TCP (IPv4, IPv6 planned), LMT (Local Machine Transport),
and SERIAL. [Some platforms do not support all kinds of transports – check
with Twin Oaks to determine the availability for your platform.]

Each transport implementation includes the capability to configure aspects
of the transport. The set of configuration options available for each
transport are described in detail in subsequent sections.

By default, CoreDX DDS will install and use the UDP
transport. Alternatively, the developer can configure
and install alternate or additional transports during
the initialization of a DomainParticipant.

15.1.1 Transport Common API

Each transport implementation provides a set of methods to facilitate
access to configuration parameters and creation of the transport; these are
referred to as the Transport Initialization API. In addition to this API, this
section also describes the DomainParticipant method to add the configured
transport(s).

Using the CoreDX DDS Transport Initialization API, the developer can
configure and create an instance of a transport. The API provides a
mechanism to retrieve the default configuration settings. These settings
can be modified by the developer as required before passing them to
‘create’. The ‘create’ operation accepts a structure that contains all of the
configuration parameters.

177

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

For example, the ‘C’ Transport Initialization API for the UDP transport
consists of the following methods:

DDS_ReturnCode_t

CoreDX_UdpTransport_get_default_config(

CoreDX_UdpTransportConfig * config);

DDS_ReturnCode_t

CoreDX_UdpTransport_get_env_config(

CoreDX_UdpTransportConfig * config);

DDS_ReturnCode_t

CoreDX_UdpTransport_clear_config(

CoreDX_UdpTransportConfig * config);

CoreDX_Transport

*CoreDX_UdpTransport_create_transport(

CoreDX_UdpTransportConfig * config);

Each transport implementation will provide this set of Transport
Initialization API methods. These methods are further described below.

15.1.1.1 Transport::get_default_config()

The get_default_config() method will initialize all fields in the provided
TransportConfig structure with default values. This provides a good starting
point for custom configuration modifications. If the user does not call
get_default_config(), then the user is responsible for manually initializing all
fields in the TransportConfig structure.

Once the TransportConfig structure has been initialized with the desired
configuration values, the configuration can be passed to the
create_transport() method. The transport will utilize the provide
configuration values to initialize the characteristics of the transport. Once
create_transport() returns, the caller can destroy or reuse the
TransportConfig structure – the transport implementation does not hold
any references to the provided structure.

The caller is responsible for clearing any allocated memory within the
TransportConfig structure. The method clear_config() will accomplish this.

15.1.1.2 Transport::get_env_config()

CoreDX DDS Programmer’s Guide

178

This method will override values in the provided TransportConfig structure
with values taken from the environment. Some transports allow the user to
adjust configuration parameters by setting environment variables. This
routine will query the environment and set configuration parameters based
on discovered values. [Not all transports use environment variables for
configuration.] In all cases, the environment variable based configuration
parameters are provided as a convenience – the same result can be
obtained by directly adjusting values within the TransportConfig structure.

The provided TransportConfig structure should be initialized to default
values (either manually or by calling get_default_config()) prior to calling
this routine.

15.1.1.3 Transport::clear_config()

This routine will clear any allocated memory within the provided
TransportConfig structure. In some cases, a TransportConfig structure may
contain dynamically allocated values. This memory may have been
allocated by the get_default_config() or get_env_config() methods, or by
the user. Each transport has a different TransportConfig structure which
may or may not include parameters that have dynamic memory allocations.
Clear_config() provides a mechanism to release any dynamically allocated
memory within the TransportConfig structure.

15.1.1.4 Transport::create_transport()

This routine will create an instance of the transport. The returned transport
instance can then be registered with a DomainParticipant. The provided
TransportConfig structure will be used to configure the transport during
creation. The user maintains ownership of the TransportConfig structure,
and can clear or reuse it after the create_transport() call returns.

On success, the create_transport() method will return a pointer to an
initialized transport instance. If there is an error during creation, NULL will
be returned. Normally, the resulting transport will be passed to
DomainParticipant::add_transport(). In this case, the DomainParticipant
takes ownership of the transport, and the user should no longer access the
transport instance. If the user does not register the transport with a
DomainParticipant, then the user maintains ownership of the transport
instance and is responsible for destroying it. This can be accomplished by
invoking the Transport::destroy method.

15.1.1.5 DomainParticipant::add_transport()

179

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

This routine, while not strictly part of the Transport API, is used to add a
configured transport to the DomainParticipant.

DDS_ReturnCode_t

DDS_DomainParticipant_add_transport(

DDS_DomainParticipant dp,

CoreDX_Transport * transport);

If the application does not install any transports using the add_transport()
method, the DomainParticipant will automatically create and register a
default UDP transport.

15.1.2 Transport Configuration

This section documents the details of each transport. This includes a
discussion of the transport specific configuration parameters.

15.1.2.1 UDP Transport API

The UDP transport is the default CoreDX DDS transport. It provides the fully
RTPS compliant, interoperable, DDS transport. There are many
configuration options to the UDP transport.

It provides support for UNICAST and MULTICAST transmission and
reception. By default, MULTICAST is enabled for both ‘built-in’ (discovery)
data and ‘user’ data. For discovery configuration options over UDP, refer to
Chapter 16 CoreDX DDSDiscovery.

The specific configuration parameters available with the UDP transport are
described in the following sections.

15.1.2.1.1 Participant Index

participant_index : short

Participant Index is an integer number that by default is computed
automatically by the RTPS implementation. It is used to distinguish
DomainParticipants on the same host and in the same Domain from one
another. In some cases, it is helpful to directly configure this value as it is
used to compute unicast port numbers. It is an error to configure 2 or more
DomainParticipants on the same host, within the same Domain, such that
they have the same Participant Index value.

CoreDX DDS Programmer’s Guide

180

15.1.2.1.2 IPv4 and IPv6

use_ipv4 : unsigned char, default = 1

use_ipv6 : unsigned char, default = 0

The transport is configured to operate over IPv4 by default; and can be
configured to support IPv6. The ‘use_ipv4’ and ‘use_ipv6’ configuration
parameters provide control over which version(s) of IP will be used.

15.1.2.1.3 Interfaces and Interface Names

interfaces : CoreDX_IpTransportInterfaceSeq,

interface_names : StringSequence

The transport, by default, will make use of all available active network
interfaces. If your machine has multiple network interfaces, this may
generate unnecessary network traffic on some of those networks. The
transport can be configured to use a subset of available interfaces.

The ‘interfaces’ configuration parameter can be configured with a list of
interface IP addresses. These IP addresses are used for sending multicast
packets and added to the list of locators advertised to peers (even if the
interfaces do not exist).

The ‘interface_names’ configuration parameter can be configured with a list
of interface names. These interfaces, if they exist, are used for sending
multicast packets and added to the list of locators advertised to peers.

‘Interface_names’ is consulted only if ‘interfaces’ is empty. If ‘interfaces’ is
non-empty, then the addresses in ‘interfaces’ define the set of IP addresses
used by the UDP transport and ‘interface_names’ is not considered. If both
‘interfaces’ and ‘interface_names’ are empty, then CoreDX DDS will query
the operating system to obtain a list of all available active interfaces.

NOTE: When configuring a static list of ‘interfaces’ for CoreDX DDS to use,
you may also want to disable dynamic interface detection (below).

15.1.2.1.4 Dynamic Interface Detection

dynamic_interfaces : unsigned char

On Operating Systems that support it, the CoreDX DDS UDP transport can
detect changes to the network interfaces and adjust its configuration in
response. For example, if the user brings up a new interface, CoreDX DDS
will discover and utilize the new interface on the fly. This dynamic interface

181

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

detection is configurable. The ‘dynamic_interfaces’ configuration
parameter is used to enable or disable this capability.

Interaction with ‘interfaces’ configuration: When ‘dynamic_interfaces’ is
enabled and ‘interfaces’ is configured with one or more IP addresses, any
newly detected interfaces will be used in addition to the ones specified in
the ‘interfaces’ list. When ‘dynamic_interfaces’ is disabled, only the
interfaces specified by ‘interfaces’ will be used.

Interaction with ‘interface_names’ configuration: When
‘dynamic_interfaces’ is enabled and ‘interface_names’ is configured with
one or more names, any newly detected interfaces will be used only if they
match with an entry in ‘interface_names’.

15.1.2.1.5 RX Buffer Sizes

rx_init_buffer_size : int,

rx_max_buffer_size : int

The UDP transport maintains buffers to handle incoming data packets. In
order to preserve memory, the size and behavior of the receive buffer is
configurable. By default, the receive buffer begins small and can grow
dynamically as required to handle the incoming data. The initial size of the
buffer is determined by the ‘rx_init_buffer_size’ parameter. The maximum
size of the buffer is limited by the ‘rx_max_buffer_size’ configuration
parameter. If these two values are identical, then the buffer will not
dynamically resize, and all memory allocation is performed during
initialization.

NOTE: If the maximum size of the RX Buffer is limited to some value smaller
than that allowed by the underlying transport (in this case, UDP maximum
datagram size is 64 KB), then it is possible that the transport will be forced
to drop some incoming data. The size of incoming UDP datagrams is
determined by the remote writing application. If the remote writer is from
a CoreDX DDS DomainParticipant, then the remote peer can be configured
to limit the size of transmitted packets. This configuration will enable
transmission of large data between two peers without requiring the
transport to establish a large RX buffer.

15.1.2.1.6 TX Packet Size Limit

tx_max_buffer_size : int

The CoreDX DDS UDP Transport transmits information in UDP datagrams.
The underlying UDP transport mechanism support datagram sizes up to

CoreDX DDS Programmer’s Guide

182

64KB. In some cases, it is beneficial to limit the size of datagram put onto
the network. For example, some network devices fail to handle large
datagrams. The ‘tx_max_packet_size’ configuration parameter is used to
limit the size of UDP datagram produced by the CoreDX DDS UDP Transport.
CoreDX DDS will fragment the data message if it will not fit within the
specified maximum size.

15.1.2.1.7 SNDBUF and RCVBUF

so_rcvbuf : int

so_sndbuf : int

The UDP sockets used by the CoreDX DDS UDP Transport have an OS
configured send and receive buffer. This is configurable through an
Operating System provided API. In general, the OS provided default buffer
sizes are appropriate; however, it is possible to override these defaults with
the ‘so_rcvbuf’ and ‘so_sndbuf’ configuration parameters. For further
information on these buffers, refer to the documentation for your
Operating System under the topic of ‘setsockopt’ and SO_RCVBUF or
SO_SNDBUF.

15.1.2.1.8 Multicast and Unicast

The CoreDX DDS UDP Transport supports the use of Unicast and Multicast
datagrams. CoreDX DDS will use Multicast when available to minimize the
number of packets written on the network. In general, this is for all
communications except for:

 Heartbeat and ACK/NACK messages (RELIABILE Reliability)

 Retransmission of data packets (RELIABLE Reliability)

 Content filtered data with Writer-side filtering enabled

The addresses used for multicast and unicast communications may be
configured.

If Multicast is not available or desirable, then CoreDX DDS can be configured
touse only Unicast transmissions. There are several configuration
parameters available to tailor the use of Unicast and Multicast. In some
cases, it may be useful to use Multicast for ‘meta’ (discovery) topics, but not
for user topics. In some cases, it is useful to transmit multicast, but not
receive it.

In order to provide full flexibility, the CoreDX DDS UDP Transport provides
the following configuration parameters related to Unicast and Multicast:

183

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Table 15-1: UDP Transport Multicast and Unicast Configuration Parameters

Parameter Description

meta_multicast_address_v4
user_multicast_address_v4

Specify the MULTICAST GROUP address used for
all multicast communications over IPv4.

meta_multicast_address_v6u
ser_multicast_address_v6

Specify the MULTICAST GROUP address used for
all multicast communications over IPv6.

multicast_ttl Specify the MULTICAST TTL value. This defines
the number of hops (routers) that multicast
packets should traverse.

tx_meta_multicast Enables the transmission of META (discovery)
data over multicast.

tx_meta_unicast Enables the transmission of META (discovery)
data over unicast.

rx_meta_multicast Enables the reception of META (discovery) data
over multicast

rx_multicast Enables the reception of USER data over
multicast.

advertise_meta_multicast Enables the advertisement of our ability to
receive META data via multicast.

advertise_user_multicast Enables the advertisement of our ability to
receive USER data via multicast.

try_to_keep_mcast_local When the DomainParticipant has matched Entites
only on the same host, attempt to keep user
multicast packets on the local ‘loopback’
interface, to avoid unnecessary traffic on external
networks.

15.1.2.1.9 Broadcast

do_meta_broadcast : unsigned char

broadcast_address : unsigned char[4]

CoreDX DDS Programmer’s Guide

184

In some network environments, Multicast is not available or desirable. In
these cases, it may be acceptable to use Broadcast as an alternative to
facilitate dynamic discovery. The CoreDX DDS UDP Transport can support
the broadcast of DomainParticipant discovery information. By setting
‘do_meta_broadcast’, the DomainParticipant Data message will be
broadcast onto the local network segment.

If operating on a host or network that does not support multicast, but does
support broadcast, then the following configuration may be useful:

advertise_meta_multicast = 0;

advertise_user_multicast = 0;

do_meta_broadcast = 1;

This will prohibit remote peers from attempting multicast communication,
but will support dynamic discovery via broadcast.

15.1.2.1.10 Debug

debug_flags : unsgiend int

The ‘debug_flags’ parameter enables debug output from the UDP transport.
Useful values are 2 (DATA_LOGGING) and 64 (TRANSPORT_LOGGING). The
flags can be combined. See <dds/dds.h> for the full set of LOGGING flags.

15.1.2.2 UDP Transport Environment Variables

CoreDX DDS provides the ability to set many of the UDP transport
configuration items through environment variables. All settings available
through environment variables are also available through the Transport API.

When only environment variables are used for transport configuration, the
default transport is automatically augmented by these environment
variables. When a combination of environment variable and transport
configuration API are used, the Transport::get_env_config() API must be
called in order to apply the environment settings.

Table 15-2: UDP Transport Environment Variables

Environment Variable Meaning Example

COREDX_IP_ADDR Sets the ‘interfeaces’ parameter

This configures the default IP
address used by the UDP

COREDX_IP_ADDR=192.168.1.5

185

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Environment Variable Meaning Example

transport. If this value is defined
in the environment, then the
transport will use only the
interface associated with the
specified address.

Legacy behavior preserved:
Setting this environment variable
will disable dynamic interface
detection (which can be re-
enabled via the Transport API if
desired).

COREDX_IFNAME Sets the ‘interface_names’
parameter

This configures the default
interface names used by the UDP
transport. This value is checked
only if COREDX_IP_ADDR is not
set (or is empty).

COREDX_UDP_DEBUG Sets the debug_flags parameter. COREDX_UDP_DEBUG=64

COREDX_UDP_RX_BUFFER_SIZE Sets the rx_init_buffer_size
parameter.

COREDX_UDP_MAX_TX_SIZE Sets the tx_max_packet_size
parameter.

COREDX_UDP_RCVBUF Sets the so_rcvbuf parameter. COREDX_UDP_RCVBUF=1024

COREDX_UDP_SNDBUF Sets the so_sndbuf parameter. COREDX_UDP_SNDBUF=1024

COREDX_USE_MULTICAST Sets the
‘advertise_user_multicast’ and
‘advertise_meta_multicast’
parameters.

COREDX_USE_MULTICAST=1

COREDX_MULTICAST_TTL Sets the multicast_ttl parameter. COREDX_MULTICAST_TTL=2

COREDX_UDP_IPV4 Sets the ‘use_ipv4’ parameter. COREDX_UDP_IPV4=1

CoreDX DDS Programmer’s Guide

186

Environment Variable Meaning Example

COREDX_UDP_IPV6 Sets the ‘use_ipv6’ parameter COREDX_UDP_IPV6=1

15.1.2.3 TCP Transport API

The TCP transport provides support for CoreDX DDS to communicate using
TCP connections. Because TCP is a connection oriented transport, there is
no facility for Multicast or Broadcast. Without Multicast or Broadcast, the
TCP transport does not provide any facilities for fully Dynamic Discovery.

The current version of the TCP transport supports only IPv4. Support for
IPv6 is planned for a subsequent release.

The specific configuration parameters available with the TCP transport are
described in the following sections.

15.1.2.3.1 Participant Index

participant_index : short

Participant Index is an integer number that by default is computed
automatically by the RTPS implementation. It is used to distinguish
DomainParticipants on the same host and in the same Domain from one
another. In some cases, it is helpful to directly configure this value as it is
used to compute unicast port numbers. It is an error to configure 2 or more
DomainParticipants on the same host, within the same Domain, such that
they have the same Participant Index value.

15.1.2.3.2 Interfaces

interfaces : CoreDX_IpTransportInterfaceSeq

The transport, by default, will make use of all available active network
interfaces. If your machine has multiple network interfaces, this may
generate unnecessary network traffic on some of those networks. The
transport can be configured to use a subset of available interfaces. The
‘interfaces’ configuration parameter can be configured with a list of
interface addresses. If the list is empty, then CoreDX DDS will query the
operating system to obtain a list of all available active interfaces.

NOTE: When configuring a static list of interfaces for CoreDX DDS to use,
you may also want to disable dynamic interface detection (below).

187

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

15.1.2.3.3 Dynamic Interface Detection

dynamic_interfaces : unsigned char

On Operating Systems that support it, the CoreDX DDS TCP transport can
detect changes to the network interfaces and adjust its configuration in
response. For example, if the user brings up a new interface, CoreDX DDS
will discover and utilize the new interface on the fly. This dynamic interface
detection is configurable. The ‘dynamic_interfaces’ configuration
parameter is used to enable or disable this capability.

Interaction with ‘interfaces’ configuration: When ‘dynamic_interfaces’ is
enabled and ‘interfaces’ is configured with one or more IP addresses, any
newly detected interfaces will be used in addition to the ones specified in
the ‘interfaces’ list. When ‘dynamic_interfaces’ is disabled, only the
interfaces specified by ‘interfaces’ will be used.

15.1.2.3.4 TX Packet Size Limit

tx_max_buffer_size : int

The CoreDX DDS TCP Transport transmits information in RTPS Messages. In
some cases, it is beneficial to limit the size of RTPS Messages put onto the
network. For example, some network devices fail to handle large packets.
The ‘tx_max_packet_size’ configuration parameter is used to limit the size
of RTPS Messages produced by the CoreDX DDS TCP Transport. CoreDX
DDS will fragment the data message into multiple smaller messages, if it will
not fit within the specified maximum size.

15.1.2.3.5 Checksum

add_checksum : unsigned char

use_checksum : unsigned char

require_checknum : unsigned char

The TCP transport has the ability to augment each RTPS message with a
checksum to address potentially corrupted data on unreliable networks.
This is controlled by the add_checksum configuration item. If set to ‘true’,
then the transport will append a checksum submessage to every RTPS
Message.

The TCP transport has the ability to parse and verify a received checksum. If
use_checksum is ‘true’, then the transport will look for a checksum in each
received RTPS Message. If the checksum is present, it will be validated. If
the checksum fails, then the RTPS Message is discarded. If the checksum is

CoreDX DDS Programmer’s Guide

188

not present, and require_checksum is ‘true’, then the RTPS Message is
discarded.

Note, require_checksum is effective only if use_checksum is ‘true’.

Note, if either use_checksum = ‘false’, or require_checksum = ‘false’, then it
is possible for corrupted data to be accepted and passed up to the DDS
application. For example, if the sender adds a checksum to a message, but
the message is corrupted in transit such that it appears to not contain an
checksum; then, if require_checksum is not ‘true’, the transport will accept
the message [because there is no checksum to validate].

Note, if require_checksum = ‘true’, then the application will not inter-
operate with a CoreDX DDS prior to version 4.4.0 [no backwards
compatibility].

15.1.2.3.6 Reconnect Delay

reconnect_delay : Duration_t

In environments with unreliable networks, or systems where the network
interface used for DDS TCP communications is frequently disconnected and
reconnected, the transport may be flooded with reconnection attempts.
The ‘reconnect_delay’ configuration item allows these reconnect attempts
to be throttled.

15.1.2.3.7 Debug

debug_flags : unsgiend int

The ‘debug_flags’ parameter enables debug output from the UDP transport.
Useful values are 2 (DATA_LOGGING) and 64 (TRANSPORT_LOGGING). The
flags can be combined. See <dds/dds.h> for the full set of LOGGING flags.

15.1.2.4 TCP Transport Environment Variables

CoreDX DDS provides the ability to set the TCP transport configuration items
through environment variables. The Transport::get_env_config() API must
be called in order to apply those environment settings to a transport.

When only environment variables are used for transport configuration, the
default transport is automatically augmented by these environment
variables. When a combination of environment variable and transport

189

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

configuration API are used, the Transport::get_env_config() API must be
called in order to apply the environment settings.

Table 15-3: TCP Transport Environment Variables

Environment Variable Meaning Example

COREDX_IP_ADDR This configures the default IP address used
by the TCP transport. If this value is
defined in the environment, then the
transport will use only the interface
associated with the specified address.

Legacy behavior preserved: Setting this
environment variable will disable dynamic
interface detection

COREDX_IP_ADDR=192.168.1.5

COREDX_TCP_DEBUG Enables debug output from the TCP
transport. Useful values are 2
(DATA_LOGGING) and 64
(TRANSPORT_LOGGING). The flags can be
combined. See <dds/dds.h> for the full set
of LOGGING flags.

COREDX_TCP_DEBUG=64

15.1.2.5 LMT Transport API

The LMT (Local Machine Transport) provides support for optimized ‘on host’
communication. The transport enables DomainParticipants that are co-
located on the same host to communicate with lower overhead and
latencies than provided by the default UDP transport.

The LMT transport is currently provided on a subset of CoreDX DDS
supported operating systems. For a current list of supported operating
systems, please contact Twin Oaks Computing at
support@twinoakscomputing.com.

NOTE: LMT is not implemented using shared memory. As a result, the
safety provided by separate program address spaces is maintained.

The specific configuration parameters available with the UDP transport are
described in the following sections.

CoreDX DDS Programmer’s Guide

190

15.1.2.5.1 SNDBUF and RCVBUF

The UDP sockets used by the CoreDX DDS UDP Transport have an OS
configured send and receive buffer. This is configurable through an
Operating System provided API. In general, the OS provided default buffer
sizes are appropriate; however, it is possible to override these defaults with
the ‘so_rcvbuf’ and ‘so_sndbuf’ configuration parameters. For further
information on these buffers, refer to the documentation for your
Operating System under the topic of ‘setsockopt’ and SO_RCVBUF or
SO_SNDBUF.

15.1.2.5.2 TX Packet Size Limit

In some cases, it is beneficial to limit the size of packet written by the
transport. The ‘max_tx_size’ configuration parameter is used to limit the
size of packet produced by the CoreDX DDS LMT Transport. CoreDX DDS
will fragment the data message if it will not fit within the specified
maximum size. Refer to the Chapter 21: Transmit Bufferssection for
additional information on buffer sizing and fragmentation.

15.1.2.5.3 RX Buffer Size

The LMT transport maintains buffers to handle incoming data packets. In
order to preserve memory, the size and behavior of the receive buffer is
configurable. By default, the receive buffer begins small and can grow
dynamically as required to handle the incoming data. The initial size of the
buffer is set at initialization to be just large enough to handle an RTPS
Message Header. The maximum size of the buffer is limited by the
‘max_rx_buf_size’ configuration parameter.

15.1.2.5.4 Debug

The ‘debug_flags’ parameter enables debug output from the LMT transport.
Useful values are 2 (DATA_LOGGING) and 64 (TRANSPORT_LOGGING). The
flags can be combined. See <dds/dds.h> for the full set of LOGGING flags.

15.1.2.6 LMT Transport Environment Variables

CoreDX DDS provides the ability to set many of the LMT transport
configuration items through environment variables. All settings available
through environment variables is also available through the Transport API.

If any transport environment variables are used to configure the LMT
transport, the Transport::get_env_config() API must be called in order to
apply those environment settings to a transport.

191

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Table 15-4: LMT Transport Environment Variables

Environment Variable Meaning Example

COREDX_LMT_DEBUG Sets the ‘debug_flags’
parameter.

COREDX_LMT_DEBUG=64

COREDX_LMT_RCVBUF Sets the ‘rcvbuf’ parameter.

COREDX_LMT_SNDBUF Sets the ‘sndbuf’ parameter.

COREDX_LMT_MAX_TX_SIZE Sets the ‘max_tx_size’
parameter.

COREDX_LMT_MAX_RX_BUF_SIZE Sets the ‘max_rx_buf_size’
parameter.

15.1.2.7 UDS Transport

The UDS transport provides the facility for serial or other stream based
transports. UDS is supported by a helper program that initializes the serial
port, and provides a multi-participant access to the single shared resource.
Because of the diverse nature of serial and other related hardware devices,
please contact Twin Oaks Computing for assistance in adapting this
transport technology to your platform.

CoreDX DDS Programmer’s Guide

192

193

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Chapter 16 CoreDX DDSDiscovery

16.1 Overview of CoreDX DDS Discovery

The automatic discovery process is one of the more powerful and useful
features of CoreDX DDS. Automatic discovery of entities allows CoreDX DDS
applications to publish and subscribe to data without needing to configure
the endpoint(s) they talk to. Whether these endpoints are on the same
machine, or across the room, CoreDX DDS applications do not need any
knowledge of the other applications they will be communicating with.

The Standard (peer-to-peer, dynamic) Discovery process in CoreDX DDS is
encapsulated in every CoreDX DDS application, and does not require any
additional daemons or services. Each CoreDX DDS application performs the
discovery process, including announcing the presence of its DDS Entities,
listening for other DDS Entities, and looking for matches between its own
DDS Entities and those discovered. The standard discovery mechanism is
interoperable between DDS implementations.

The automatic discovery process includes the following steps:

1. Discovering DomainParticipants
2. Discovering DataReaders and DataWriters within

those discovered Participants

3. Matching those discovered DataReaders and
DataWriters with local DataReaders and

DataWriters

Using the CoreDX DDS Secure extensions enhances this automatic discovery
process. For more information, refer to the CoreDX DDS Secure
Programmer’s Guide.

Despite the many benefits of the Standard Discovery mechanism, it does
have some drawbacks for certain system architectures. For example, where
security requirements prevent dynamic discovery, where deployment
environments require alternative multicast or unicast addresses, or where
scalability requirements need an alternative solution to the standard peer-
to-peer discovery. CoreDX DDS provides several alternatives for configuring
the discovery process.

CoreDX DDS Programmer’s Guide

194

16.2 Discovering DomainParticipants

The first step in the automatic discovery process is to discover remote
DomainParticipants. Each DomainParticipant will periodically announce its
existence (including how it can be reached directly to learn about containing
DataReader and DataWriter Entities) by writing a
SPDPdiscoveredParticipantDatamessage to the multicast address specified
by the DDS standards. Each DomainParticipant will also listen on that same
multicast address to learn about other DomainParticipants.

After a DomainParticipant has been discovered, it will be considered ‘alive’
as long as its SPDPdiscoveredParticipantData messages continue to be
received. If enough time expires without receiving a
SPDPdiscoveredParticipantData message from a DomainParticipant, that
DomainParticipant is no longer considered ‘alive’.

16.2.1 Configuring Participant Discovery

The DDS standards specify default durations for how often
SPDPdiscoveredParticipantData messages should be sent, and how much
time should expire before a DomainParticipant should be considered ‘not
alive’.

While these default durations work well for most network environments,
they may not work for all environments. For example, networks with very
long latencies, or extremely bandwidth constrained networks may need to
tailor the timing of discovery messages.

CoreDX DDS allows the application to configure timing of DomainParticipant
discovery by using the CoreDX_DiscoveryQosPolicy, as described below.

QoS Policy Default Value Description

CoreDX_DiscoveryQosPolicy

dpd_push_period (duration_t) 5 seconds Configure the amount of time
between sending of
SPDPdiscoveredParticipantData
messages.

dpd_lease_duration
(duration_t)

120 seconds Configure the amount of time
the can expire without receiving
a

195

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

QoS Policy Default Value Description

SPDPdiscoveredParticipantData
message before we consider a
remote Participant be ‘not alive’.

16.3 Matching DataReaders and DataWriters

The matching of DataReaders and DataWriters is a sophisticated process
that ensures the subscribers of data are matched appropriately with
producers of data. This careful matching helps to reduce programming
errors, in addition to reducing unnecessary storage and network
communications usage.

The following three conditions are checked between DataReaders and
DataWriters, and all must be met in order to create a match:

1. The Topic Names must match

The name used when creating a Topic with
DomainParticipant::create_topic() is communicated to peer
DomainParticipants during discovery. The name of the Topic used by a
DataReader must match the name of the Topic used by a DataWriter.

2. The Type Names (and type definition, if
available) must match

The name used when registering a data type with
TypeSupport::register_type() is communicated to peer
DomainParticipants during discovery. The name of the registered type
associated with the Topic used by a DataReader must match the name
of the registered type associated with the Topic used by a DataWriter.

Further type checking is performed when the type definition is
available. The type definition is encoded for use during discovery in one
of two ways: typecode ortypeobject.These type definitions provide more
accurate information about the data type actually being published by
DataWriters and expected to be received by DataReaders. Using
typecodes or typeopjects in Entity matching provides an additional level
of type safety.

CoreDX DDS Programmer’s Guide

196

By default, CoreDX DDS v4 applications exchange typeobject
information during discovery. [CoreDX DDS v3 applications exchange
typecode information during discovery.] More information on typecode
and typeobject and their configuration can be found in the CoreDX DDS
Type System Programmer’s Guide.

3. The QoS policies must be compatible

The QoS policy defined with DataReaders and DataWriters is
communicated to peer DomainParticipants during discovery. Once the
Topics and Types have been verified as matching between a DataReader
and DataWriter, the QoS policies are checked for compatibility. Refer to
section Part 3:13.1QoS Compatibility for additional information on QoS
compatibility matching.

16.3.1 Configuring Entity Matching

Typecode and typeobjectare not required for DDS discovery. By default,
CoreDX DDS will send and use typeobject for Entity matching, but the
application can configure this behavior. The RTPSReader and RTPSWriter
QoS policies will control whether typecode and/or typeobject (if they are
available) will be used for entity matching. Options to the data type
compiler (-i) define if typecode, typeobject, or no type encodings will be
generated, and available.

Further, when matching types that are compatible, but not equivalent,
CoreDX DDS will, by defult, coerse a match. This behavior is configurable
using the DataReader QoS policy.

QoS Policy Default Value Description

CoreDX_RTPSReaderQosPolicy

send_typecode (unsigned
char)

1 (true) Configure this DataReader to
send (or not send) the typecode
for the Topic it is subscribing to.

CoreDX_RTPSWriterQosPolicy

send_typecode (unsigned
char)

1 (true) Configure this DataWriter to
send (or not send) the typecode
for the Topic it is publishing.

197

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

QoS Policy Default Value Description

DataReaderQoSPolicy

type_consistency.kind

ALLOW_TYPE_

COERCION

Possible values:
DISALLOW_TYPE_

COERCION,

ALLOW_TYPE_

COERCION.

There are several possible reasons an application may need to disable the
sending of typecodes (and therefore, removing the capability to use them
for Entity matching during discovery).

Because type encoding was not well specified in the earlier DDS standards,
it is possible that DDS implementations are not interoperable in matching all
possible typecodes.

In addition, typecodes and typeobjects require system resources: generated
code uses additional static or FLASH memory, sending and receiving
typecodes uses additional dynamic or RAM memory and network resources.
This is especially true of large type definitions. In extreme cases, the
typecode may be too large to send over the available transport (this is
especially true for low bandwidth transports).

16.4 Static Discovery

The CoreDX DDS middleware supports dynamic discovery by default. This
allows DomainParticipants to discover other Participants in the same
domain. Once DomainParticipants discover each other, then the contained
DataReaders and Writers are dynamically matched.

The standard dynamic discovery protocol is based on UDP MULTICAST, and
works effectively in a local area network, and can be configured to work
through routers and other networking devices. However, there are some

CoreDX DDS Programmer’s Guide

198

situations in which UDP MULTICAST is not desirable or possible, or where
Dynamic Discovery is not suitable for the application.

In order to address these situations, CoreDX DDS provides QoS support for
defining remote peer DomainParticipants. An extension QoS policy is added
to the DomainParticipant QoS policies. This policy, peer_participants,
identifies a list of remote DomainParticipants with which this participant
should communicate. This avoids the initial participant discovery process,
and initiates direct communication between the identified participants.

This QoS policy can be updated on the fly, after the DomainParticipant is
enabled, and can support an application controlled discovery mechanism.
Table 16-1shows a C language example of setting the ‘peer_participant’ QoS
policy.

Table 16-1: Code Example of peer_participants QoS

Example code to pre-define Peer Participants

 DDS_DomainParticipant dp;

 DDS_ReturnCode_t retval;

 DDS_DomainParticipantQos dp_qos;

 CoreDX_ParticipantLocator pl;

 DDS_DomainParticipantFactory_get_default_participant_qos(&dp_qos);

 /* add two 'a-priori' configured peer locators */

 /* two different participant id's and two different IP addrs */

pl.participant_id = 0;

pl.participant_id_max = 1; /* try to talk to DP 0 and DP 1 at

 * the specified IP address */

pl.participant_locator.kind = COREDX_UDPV4_LOCATOR_KIND_QOS;

memset(pl.participant_locator.addr, 0, 16);

pl.participant_locator.addr[12] = 192;

pl.participant_locator.addr[13] = 168;

pl.participant_locator.addr[14] = 1;

pl.participant_locator.addr[15] = 12;

 seq_add(&dp_qos.peer_participants.value, &pl);

pl.participant_id = 1;

pl.participant_locator.kind = COREDX_UDPV4_LOCATOR_KIND_QOS;

memset(pl.participant_locator.addr, 0, 16);

pl.participant_locator.addr[12] = 192;

pl.participant_locator.addr[13] = 168;

pl.participant_locator.addr[14] = 1;

pl.participant_locator.addr[15] = 22;

 seq_add(&dp_qos.peer_participants.value, &pl);

199

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

 dp = DDS_DomainParticipantFactory_create_participant(0,

 &dp_qos,

 NULL, 0);

16.5 Centralized Discovery

16.5.1 Overview

The Standard (peer-to-peer)Discovery process in CoreDX DDS is
encapsulated in every CoreDX DDS application, and does not require any
additional daemons or services. Each CoreDX DDS application performs the
discovery process, including announcing the presence of its DDS Entities,
listening for other DDS Entities, and looking for matches between its own
DDS Entities and those discovered. The standard discovery mechanism is
interoperable between DDS implementations.

This Standard Discovery is depicted in the below diagram.

Figure 17: Standard Discovery (peer-to-peer) architecture

Despite the many benefits of the Standard Discovery mechanism, it does
have some drawbacks for certain system architectures. In particular,
Standard Discovery may not scale well to large DDS domains. In DDS
domains with large numbers of DDS entities (Participants, Readers or

CoreDX DDS Programmer’s Guide

200

Writers), the Standard Discovery mechanism can require large amounts of
memory as every Participant discovers all other entities in the system. In
many case, this ‘world view’ of the DDS domain is wasteful. Often, a
Participant is required to communicate with only a small sub-set of the
entire DDS network.

To address the scalability issues of Standard Discovery, CoreDX DDS
supports a specialized discovery mechanism calledCentralized Discovery.
CoreDX Centralized Discovery performs the work of discovering all DDS
Entities and appropriately communicating those entities to participants
based on ‘need to know’.The Centralized Discovery mechanism can scale to
very large DDS domains, without the explosion of memory allocation found
in Standard Discovery.

Further, Centralized Discovery is designed to be interoperable with Standard
Discovery. This means that a DDS domain may combine both discovery
mechanisms as necessary: some Domain Participants can use Standard
Discovery while others use Centralized Discovery.

This Centralized Discovery is depicted in the below diagram.

Figure 18: Centralized Discovery architecture

16.5.2 Memory Utilization and Scalability

With Standard Discovery, each DomainParticipant learns and remembers
every active DomainParticipant, DataReader, and DataWriter in the DDS

201

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Domain. As the number of DDS Entities in the Domain grows, so does the
amount of discovery information stored in each DomainParticipant.

For systems that contain many DDS Entities, it may be desirable to reduce
the number of copies of this maintained discovery information. This is one
benefit of Centralized Discovery. The discovery information about all DDS
Entities in a DDS Domain is stored in a centralized location, reducing the
overall memory utilization in the system.

The Centralized Discovery Daemon determines the potentialReader/Writer
matches for all its connected DomainParticipants. DomainParticipants learn
only about potential matches from the Centralized Discovery Daemon.

A CoreDX Centralized Discovery Daemon must reside on the same machine
as DomainParticipants that are configured to use Centralized Discovery.
Therefore, the greatest benefits for memory reduction are seen when:

1. There are many DDS Entities on one machine that can use Centralized
Discovery, and

2. For each DomainParticipant, a small percentage of the DDS Entities in
the DDS domain match with its own DDS Entities.

Note that the selection of ‘discovery’ mechanism affects only the exchange
of discovery information – application data is not affected. Application data
is always exchanged peer-to-peer, even when using Centralized Discovery.

16.5.3 Network Utilization and Discovery

With Standard Discovery, each DomainParticipant communicates with every
active DomainParticipant in the DDS Domain. As the number of DDS
DomainParticipants in the Domain grows, so does the amount of network
traffic generated to communicate with each peer DomainParticipant.

For systems that contain many DomainParticipants, and at least some of
these DomainParticipants are co-located on the same computer, it may be
desirable to reduce the number messages generated on the network. This
is an additional benefit of Centralized Discovery. The DomainParticipants
co-located on a computer will communicate with their location Centralized
Discovery Daemon, and only the Centralized Discovery Daemon will
communicate off-box, reducing the amount of discovery network traffic.

CoreDX DDS Programmer’s Guide

202

16.5.4 Configuring Centralized Discovery

Configuring CoreDX DDS discovery happens at the DomainParticipant using
a QoS policy. A DomainParticipant can be configuredto use a certain
discovery mechanism at creation time through a QoS policy.

By default, CoreDX DDS uses Standard Discovery (PEER). To use Centralized
Discovery, change the DomainParticipant CoreDX_Discovery_Qos_Policy to
specify centralized discovery. The DomainParticipant QoS policy for
configuring discovery (and built-in entities) is described below.

CoreDX Centralized Discovery is compliant with the OMG’s RTPS Wire
Protocol standard, and is therefore interoperable with other DDS
implementations. Since DomainParticipants using Centralized Discovery can
communication with DomainParticipants using standard discovery, a mix of
discovery types can be configured in the same DDS network.

QoS Policy Default Value Description

CoreDX_DiscoveryQosPolicy

discovery_kind
(DiscoveryQosPolicyDiscoveryK
ind)

DDS_PEER_
DISCOVERY_QOS

Configure this DomainParticipant
to use standard (PEER) discovery
or centralized discovery.

Possible values are:
DDS_PEER_DISCOVERY_QOS and
DDS_CENTRAL_DISCOVERY_QOS

16.5.5 Deploying Centralized Discovery

A CoreDX Centralized Discovery Daemon must be deployed on each
computer that is hosting a DomainParticipant configured to use Centralized
Discovery. There should be only one CoreDX Centralized Discovery Daemon
running on a computer. Computers that are not hosting DomainParticipants
configured to use Centralized Discovery do not need a CoreDX Centralized
Discovery Daemon.

An example deployment using Centralized Discovery is shown below.

203

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Figure 19: Example Centralized Discovery deployment

16.6 Wait for Discovery

The automatic and dynamic discovery process is defined by the DDS
standards and employed by CoreDX DDS. While the discovery algorithms
are efficient, the dynamic nature of discovery means it is impossible to
determine the amount of time required for discovery to complete, even
when all entities are located within one DomainParticipant.

For example, consider an application with the following execution flow (and
no pauses or gaps between steps):

1. Create DomainParticipant
2. Register data types and create Topics
3. Create Subscribers and DataReaders
4. Create Publishers and DataWriters
5. Write data

Discovery and matching of these local DataReaders and DataWriters may
not complete before the application writes data. If the discovery and
matching is not yet complete, data will not be received by the DataReaders
(since they are not yet known to exist by the DataWriter).

To address this problem, CoreDX DDS provides an API on
DomainParticipants to wait for built-in acknowledgements:

DomainParticipant::builtin_wait_for_acknowledgments(

Duration_t *max_wait)

CoreDX DDS Programmer’s Guide

204

While a DomainParticipant configured to use dynamic discovery has no way
to know how many, if any remote DDS Entities may be discovered, this API
will block the application until all DataReaders and DataWriters within
known DomainParticipants have been discovered and matched as
appropriate (or until the max_wait duration has expired).

16.7 Access to Discovery Information

Some DDS Entities provide access to a subset of discovery information via
their API. Each DomainParticipant provides access to all currently known
peer DomainParticipants (including itself) with the
get_discovered_participants() method. Each DataReader and DataWriter
can provide information about the set of currently matched DataWriters
and DataReaders, respectively, with the get_matched_publications() and
get_mached_subscriptions() methods.

The relevant methods are summarized in the table below.

Method Description

DomainParticipant::get_discovered_participants() Get the list of currently discovered
DomainParticipants (sequence of
handles)

DomainParticipant::get_discovered_participant_data() Get information about a specific
discovered DomainParticipant
(identified by handle)

DataWriter::get_matched_subscriptions() Get the list of DataReaders currently
matched to this DataWriter
(sequence of handles)

DataWriter::get_matched_subscription_data() Get information about a specific
DataReader (identified by handle)

DataReader::get_matched_publications() Get the list of DataWriters currently
matched to this DataReader
(sequence of handles)

DataReader::get_matched_publication_data() Get information about a specific
DataReader (identified by handle)

Table 16-2: API Methods to Access Discovery Information

205

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Example usage:

Example C++ Code Snippit

#include <dds/dds.hh>

#include <dds/dds_bulitin.hh>

...

DDS::InstanceHandleSeq handles;

retval = dp->get_discovered_participants(&handles);

DDS::InstanceHandle_t handle;

for (i = 0; i < handles.size(); i++)

 {

 handle = handles[i];

DDS::ParticipantBuiltinTopicData dpdata;

dp -> get_discovered_participant_data(&dpdata, handle);

 ...

 }

The discovery information available by these methods is limited to the
subset that matches an existing local entity. In some cases an application
would like to learn about all discovered entities, regardless of whether is
matches a local entity. This can be accomplished by accessing the built-in
DataReaders, as described in section 16.7: Introduction.

16.8 Discovery and Deterministic Machines

CoreDX DDS discovery adheres to the DDS standards and is interoperable
with other DDS implementations. Part of this interoperable discovery
process is the assignment of Globally Unique Identifiers (GUIDs) to RTPS
Entities that are advertised and may be discovered by other RTPS Entities,
including Participants, Readers, and Writers.

The Participant GUID is important for dynamic discovery. Each Participant
will generate a unique GUID and include it in the discovery messages it
publishes. When a new discovery advertisement message is received, a
Participant can use the GUID to determine if this is new Participant, or one
that it has already discovered. Newly discovered participants will

CoreDX DDS Programmer’s Guide

206

participate in additional data exchange to share QoS policy settings and
information about existing DataReaders and DataWriters.

The discovery process allows an application’s Participant to go away (by
normal or abnormal exit, or machine restart), restart, and seamlessly re-join
the existing DDS network as a new Participant. This works only if the
restarting application’s Participants are assigned a uniqueGUID.

According to the standard, the Participant GUID is created using the
following data:

 IPv4 address of the computer hosting theParticipant

 Process ID of this Participant’s application

 One-up counter for each Participant within this application

 Entity Kind (fixed identifier for Participant)

For many computer systems, this algorithm does generate unique GUID’s
for Participants, even after machine restarts. However, applications running
on deterministic Operating Systems, such as VxWorks, may always start
with the same process ID, resulting in a Participant always having the same
GUID. This can cause a problem when a Participant attempts to re-join DDS
communications using the same GUID it had previously. Remote
Participants on the DDS network will consider this Participant an already-
discovered Participant, and will not participate in the necessary data
exchange to share QoS policy settings and existing DataReaders and
DataWriters.

To address this problem with deterministic systems, CoreDX DDS provides
an additional discovery QoS policy setting for applications to use their own
algorithm to set the Process ID portion of the GUID. When used, this should
be a number that uniquely identifies an application on a computer, and will
not be the same after a machine restart. This might be a one-up counter
that is written to persistent storage (disk, writable FLASH memory) or
another application defined algorithm.

QoS Policy Default Value Description

CoreDX_DiscoveryQosPolicy

guid_pid 0 A value of ‘0’ will use the default:

207

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

QoS Policy Default Value Description

(DDS_BUILTIN_TOPIC_KEY_TYP
E_NATIVE)

the application process ID (PID).
Values other than ‘0’ will be used
in place of the PID in
constructing the GUID.

209

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

CoreDX DDS Programmer’s Guide

210

Chapter 17 Configuring Reliability Protocol

17.1 Reliability Protocol

The CoreDX DDS Reliability protocol addresses dropped packets, out of
order samples, communication disconnects, and application re-starts to
ensure delivery of published data to the intended recipients. This protocol
is supported by the standardized RTPS protocol and theDataReader and
DataWriter Data Caches (see Chapter 10.5 for a full discussion on the Data
Caches).

This reliability protocol is light-weight and minimizes latency. Dropped
packets are quickly detected and repaired. The CoreDX DDS reliability
algorithms are carefully designed to provide very good performance across
a wide range of operating environments, and will dynamically self-tune and
adjust based on current conditions.

In some cases, known network or system characteristics may result in a
system that benefits from manual configuration of the CoreDX DDS
reliability protocol. CoreDX DDS provides tunable parameters for
configuring the reliability protocol to allow the application developer to
achieve an optimal balance of overhead and timely data retransmission.

NOTE: Take care when manually adjusting CoreDX DDS Reliability
parameters! In most CoreDX DDS networks, using default reliability
protocols provides better performance than tuning individual timing
configurations, and is much simpler to maintain over time.

17.1.1 Cache Management

The reliable protocol effects more than the handshaking between
DataWriters and DataReaders. The Data Cache also plays an important role
in reliable communications.

On the DataWriter, the Data Cache contains samples that have not been
acknowledged by all reliable subscriptions. [Data may be kept longer based
on the Durability QoS configuration.] The data cache size is controlled by
the History and the Resource Limits QoS policies. If the data cache becomes
full, the History QoS policy kindcomes into play. With a History kind of
KEEP_ALL, the write() call will block until there is space, or until the
max_blocking_time has elapsed. With a History kind of KEEP_LAST, the

211

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

oldest sample will be removed from the cache to make room for a new
sample.

On the DataReader, the Data Cache contains samples in order, with respect
to the source DataWriter. If samples are lost, the data cache may contain
out of order samples (those samples that are received are saved while
waiting for the lost sample(s) to be retransmitted and received). These
samples are stored in a “forward cache” and are not available to the
application until all missing samples are received. This design minimizes
retransmissions of data samples, while ensuring the application receives
only in order data samples. The DataReader data cache size is controlled by
the History and the Resource Limits QoS policies. If the data cache becomes
full, the History QoS policy kind comes into play. With a History kind of
KEEP_ALL, the DataReader will drop new incoming samples, sending a NACK
to the DataWriter, and forcing the DataWriter to save and re-transmit the
samples. With a History kind of KEEP_LAST, the oldest sample will be
removed from the cache to make room for a new sample.

17.1.2 Heartbeats, ACKs, and NACKs

The reliability protocol relies on Heartbeats from the DataWriter and
ACK/NACK responses from the DataReader. Heartbeat messages tell the
DataReaders the data that is currently available (that has been sent) at the
DataWriter. Positive ACK and negative NACK Responses are sent in
response to a Heartbeat and confirm the DataReader has received one or
more samples, and possibly requests one or more samples to be
retransmitted.

Figure 17-1 shows a simple example of the network traffic (including
Heartbeat and ACK Responses) when there are no dropped samples. Notice
that Heartbeats can be sent in combination with data samples, reducing
network overhead.

CoreDX DDS Programmer’s Guide

212

Figure 17-1: Example DDS Usage

In this example, the DataReader sends an ACK in response to each of the 2
Heartbeats received from the DataWriter. In the first ACK response, the
DataReader confirms receipt of all available samples up to sample #3. In the
second ACK response, the DataReader confirms receipt of all available
samples up to sample #6.

Figure 17-2 shows a similar example, except one data sample has been lost,
and must be retransmitted.

Figure 17-2: Example DDS Usage

213

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

In this example, the DataReader sends an ACK/NACK in response to the first
Heartbeat from the DataWriter. The DataReader can acknowledge samples
#1 and #3, but not sample #2. When the DataWriter receives the NACK, it
will retransmit sample #2, sending it directly to this DataReader who needs
it. In response to the next Heartbeat from the DataWriter, the DataReader
can now acknowledge all data samples through #6.

17.1.3 Periodic Data, Reliability Protocol, and Data Cache
Configuration

For applications that publish periodic data (data is written at a known
frequency) with Reliablity.kind = RELIABLE, consideration should be given to
the DataWriter cache size with respect to the frequency of writes,
frequency of Heartbeats, and ACK/NACK resonse delay. The duration
between Heartbeats, along with the ACK/NACK response delay provide the
minimum amount of time that will elapse before sent samples may be
acknowledged by a matched DataReader, allowing the DataWriter to
potentially remove those samples from it’s cache.

Conside the example, with a DataWriter configured with the QoS:

 Reliability.kind =

DDS_RELIABLE_RELIABILITY_QOS

 History.kind = DDS_KEEP_ALL_HISTORY_QOS

 Resource_Limits.max_samples = 2

The following diagram depicts a timeline and the DataWriter cache:

CoreDX DDS Programmer’s Guide

214

Note the time between when the first sampes are written by the writing
application and the time those samples are potentially acknowledged by the
reading application. The DataWriter cache should be sized to allow for the
number of writes() that will occur during that time period, at a minimum.

17.1.4 Unresponsive DataReaders

DataReaders that do not respond to Heartbeats with ACK/NACK messages in
a timely manner pose a unique challenge to the standardized DDS Reliability
protocol. A DataWriter with certain QoS policy settings will keep each
published sample in its data cache until it is acknowledged by all matched
Reliable DataReaders. If a DataReader becomes unresponsive (that is, the
DataWriter is no longer receiving ACK/NACK messages from this
DataReader), the DataWriter is unable to purge samples from its cache.
After some period of time, the data cache may become full, or available
memory will be used to store these un-acknowledged samples. At this time
the application may be unable to write additional data (exact behavior will
depend on other QoS policy configuration), and the other, responsive

215

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

DataReaders will not receive any additional data, all because of 1
unresponsive DataReader.

To address this challenge, CoreDX DDS will degrade unresponsive
DataReaders to a Reliability configuration that not quite Reliable. The
DataWriter will continue to send Heartbeats to this DataReader (in the hope
that it will eventually respond with ACK/NACK messages), but will no longer
expect (or wait for) samples to be acknowledged by this DataReader. In the
above example, the DataWriter will remove samples from its data cache
once they are acknowledged by all responsive DataReaders, allowing data
communications to continue without interruption. [Note that the
unresponsive DataReader may miss samples.]

When a DataReader is marked unresponsive is configurable by the
application through the ack_deadline parameter (described below), and this
DataReader degrading feature can be disabled by setting the ack_deadline
to ‘infinate’.

17.1.5 ACK-less Reliable

In addition to the standardized BEST_EFFORT and RELIABLE Reliability QoS
modes, CoreDX DDS provides an alternate, modified form of the Reliability
QoS. This reliability mode falls between BEST_EFFORT and RELIABLE in
terms of the guarantees that it makes for sample delivery. We refer to this
as the ACK-less Reliable mode. In this mode, the DataWriter behaves very
much like a 'reliable' writer, but it does not require positive-
acknowledgements from DataReaders. Instead, it uses a time period
(reliable_sample_hold_time) to determine how long to hold a sample
before flushing it from the local cache. If a DataReader sends a negative-
acknowledgment (asking for retransmission of a sample), the writer will
comply if the sample is still in its local cache [this behavior is identical to the
standard RELIABLE behavior]. If the Writer has flushed the sample due to
expiration of the sample_hold_time, then the writer will respond with a
'gap' message indicating that the sample is no longer available [again, this is
consistent with the standard RELIABLE behavior].

If the sample_hold_time is configured to be infinite, then the writer must
have some other mechanism that allows it to remove samples from its local
cache, for example: limited History depth or non-infinite Lifespan.

In exchange for the possibility of undelivered samples, there are a few
subtle benefits of this reliability mode. First, the network traffic is reduced
slightly by not requiring positive acknowledgements from matched readers.

CoreDX DDS Programmer’s Guide

216

Second, an unresponsive reader (one that fails to acknowledge samples)
does not adversely impact the writer. In the standardized RELIABLE mode,
an unresponsive reader would cause the writer to hold onto all samples
until the reader has been determined to be gone. [CoreDX DDS, by default,
will handle these ‘unresponsive’ DataReaders as described earlier in this
section.] Without some form of handling of ‘unresponsive’ DataReaders,
this may cause the writer cache to grow excessively, and if resource limits
are in effect, then the writing application may find itself unable to add
further samples. In this way, a single mis-behaving reader may have a
negative impact on the writer and thereby all other matched readers.

17.2 Reliability QoS Configuration

Some applications need the ability to tailor the reliability protocol to
achieve an optimal balance of overhead and timely data retransmission.

CoreDX DDS provides additional QoS policies to allow tailoring of the
RELIABLE handshaking protocol: the DataWriter_RTPS_WriterQoSPolicy and
the DataReader_RTPS_ReaderQoSPolicy. These QoS policies allow the
application to tailor when and how frequently CoreDX DDS sends
heartbeats, NACKs, and related responses. Configuring these items can
balance latency and overhead in RELIABLE communications, and help avoid
packet storms.

These additional QoS policies are described below.

Table 17-1: CoreDX DDS RTPS_Protocol QoS Policy

QoS Policy Default
Value

Description

DataWriter_RTPSWriterQoSPolicy

heartbeat_period (Duration_t) 2 ms The duration between Heartbeats
sent by the DataWriter.

nack_response_delay (Duration_t) 1 us The delay between the receipt of a
NACK Response and the
DataWriter’s retransmission of
data.

217

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

QoS Policy Default
Value

Description

nack_suppress_delay (Duration_t) 0 ns Not yet used by CoreDX DDS

ack_deadline (Duration_t) INFINITE The amount of time the
DataWriter should wait for an
ACK/NACK message from a
DataReader before it is considered
unresponsive.

require_acks 1 (true) Applicable when the DataWriter is
configured with Reliability.kind =
RELIABLE. When set to ‘TRUE’, the
DataWriter uses standard
RELIABLE Reliability. When set to
‘FALSE’, the DataWriter uses ACK-
less Reliability.

reliable_sample_hold_time INFINITE Applicable when require_acks=0
(false). The amount of time an
ACK-less DataWriter will hold
samples before removing them
from its cache (as if they have
been ACK’d by matched Reliable
DataReaders).

DataReader_RTPSReaderQoSPolicy

heartbeat_response_delay
(Duration_t)

500 us The delay between the receipt of a
Heartbeat and the DataReader’s
ACK/NACK Response.

send_initial_nack 1 (true) This setting is applicable only to
Reliable DataReaders. When set
to non-zero (true), the DataReader
will send a “NACK” message to
each newly discovered DataWriter,
jumpstarting the handshaking
process to receive any data the
DataWriter has to publish. One
possible reason to disable this

CoreDX DDS Programmer’s Guide

218

QoS Policy Default
Value

Description

‘jumpstart’, is performance: with
lots of DataReaders matching with
one DataWriter at the same time.

CoreDX_DiscoveryQosPolicy

heartbeat_period (Duration_t) 10 ms For built-in writers, the delay
between the receipt of a NACK
Response and the DataWriter’s
retransmission of data.

nack_response_delay (Duration_t) 1 us For built-in writers, the delay
between the receipt of a NACK
Response and the DataWriter’s
retransmission of data.

nack_suppress_delay (Duration_t) 0 sec No yet used by CoreDX DDS

heartbeat_response_delay
(Duration_t)

0 sec For built-in readers, the delay
between the receipt of a
Heartbeat and the DataReader’s
ACK/NACK Response.

send_initial_nack 1 (true) When set to non-zero (true), the
built-in DataReaders will send a
“NACK” message to each newly
discovered built-in DataWriter,
jumpstarting the handshaking
process to receive any discovery
data the DataWriter has to
publish. This may need to be
disabled to support
interoperability (in our testing to
date, one DDS vendor did not
support this option).

219

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Chapter 18 Configuring Reader Specific Locators

18.1 Overview

Some network environments can benefit from having a subset of traffic
isolated to a specific multicast address (different from other traffic).

DataReaders and DataWriters in CoreDX DDS inherit the 'default' multicast
and unicast locators from the DomainParticipant. If no specific locators are
specified, then the entities will use the defaults. If a specific multicast
locator is specified, it will be used in place of any default multicast locators.
If a specific unicast locator is specified, it will be used in place of any default
unicast locators.

The default UDP IPv4 multicast address used for user data is 239.255.0.1.

By configuring a DataReader to accept data on a specific address (Locator),
then all DataWriters matched with that DataReader will send data to that
specific address.

18.2 Configuration

The specific locators are configured in the
DataReaderQos.rtps_reader.locators QoS policy. This field is a sequence of
CoreDX_Locators. A CoreDX_Locators has the following structure:

 typedef struct CoreDX_Locator_t {

 int kind;

 uint32_t port;

 unsigned char addr[COREDX_LOCATOR_ADDR_LEN];

 } CoreDX_Locator;

To define a specific multicast locator in 'C' for the UDP transport, use the
following:

 CoreDX_Locator l;

 DDS_DataReaderQos dr_qos;

 DDS_Subscriber_get_default_datareader_qos(sub,

&dr_qos);

memset(&l, 0, sizeof(l));

CoreDX DDS Programmer’s Guide

220

 l.kind = COREDX_UDPV4_LOCATOR_KIND_QOS;

 l.port = 7400;

 l.addr[12] = 239;

 l.addr[13] = 255;

 l.addr[14] = 0;

 l.addr[15] = 2;

 seq_add(&dr_qos.rtps_reader.locators, &l);

To define a specific multicast locator in 'C++' for the UDP transport, use the
following:

 sub->get_default_datareader_qos(dr_qos);

DDS::Locator l;

 l.kind = COREDX_UDPV4_LOCATOR_KIND_QOS;

 l.port = 7400;

memset(l.addr, 0, COREDX_LOCATOR_ADDR_LEN);

 l.addr[12] = 239;

 l.addr[13] = 255;

 l.addr[14] = 0;

 l.addr[15] = 2;

 dr_qos.rtps_reader.locators.push_back(l);

CoreDX DDS supports setting specific UDP MULTICAST locators on the
DataReader. Other combinations (other transports, or unicast locators) are
not supported at this time.

221

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Chapter 19 Dynamic Types

19.1 Overview

The original DDS standards ware designed around the assumption that
types associated with Topics are known at compile time. While this
architecture provides better communication performance (throughput and
latency) and better type safety, static data typing makes it difficult to
dynamically define Topics at run time.

The addition of Dynamic Types to the CoreDX DDS baseline allows greater
flexibility to application developers. Developers can define their data types
at compile time or discover data types at run time. Once a data type is
discovered, the application can dynamically create DataReaders to receive
Topic data and use introspection to parse and process received data.
DataWriters can also be created to write the discovered data type.

The dynamic type technology can also benefit applications that will be
deployed to some very space constrained environments. Using Dynamic
Types can help reduce the code size by reducing or eliminating the type
specific code generated from IDL or XML.

The Dynamic Type API is fully defined in the CoreDX DDS Type System
Programmer’s Guide.

19.2 Subscribe with Dynamic Types

A CoreDX DDS application may subscribe to a Topic that is discovered at run
time, without any knowledge of the data type associated with the Topic.The
basic steps involved in this type of application are:

1. Use the built-in DataReader to Discover a DataWriter
2. Use the Type Object or Type Code information from the DataWriter to

register a Data Type
3. Use the topic information from the DataWriter to create a Topic
4. Create a Dynamic DataReader
5. Read data

CoreDX DDS Programmer’s Guide

222

An example for subscribing with Dynamic Types can be found in the
examples directory of the CoreDX DDS package.

19.3 Publish with Dynamic Types

A CoreDX DDS application may publish to a Topic that is discovered at run
time, without any knowledge of the data type associated with the Topic.
This is possible with the Dynamic Types features and API, although not a
common use case for Dynamic Type. The basic steps involved in this type of
application are:

1. Create a dynamic data type representing the type of data to be
published

2. Register the dynamic data type
3. Create a Topic
4. Create a Dynamic DataWriter
5. Initialize and send data

An example for publishing with Dynamic Types can be found in the
examples directory of the CoreDX DDS package.

223

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Chapter 20 Threading Options

20.1 Overview

CoreDX DDS contains advanced multi-threaded technology. This feature
allows any application (even non-threaded applications) running on multi-
core hardware to make use of multiple cores. Using multiple cores on
multi-core hardware provides significant performance benefits, as
confirmed using Intel’s Thread Checking benchmarking system.

Because many of our users are not running on multi-core hardware, and in
fact are running on significantly reduced-power single core hardware,
CoreDX DDS is configurable to provide performance benefits in this type of
resource constrained environments.

20.2 Configuring Threading Options

CoreDX DDS runs in an optimized threaded model by default. This mode
creates three threads for each DomainParticipant created in the application:

1. The main (application) thread

The main (application) thread contains the main() of the application,
and most of the application execution.

2. The CoreDX DDS reading thread

The CoreDX DDS reading thread is responsible for reading data off
the transport (UDP socket, or other transport as configured by the
application). Data is read off the transport, unmarshaled, and put
into the Data Caches of the appropriate DataReaders.

3. The CoreDX DDS work thread

The CoreDX DDS work thread performs all remaining DDS “work”.
This includes discovery, writing application data to the transport,
maintaining liveliness, performing handshaking and any necessary
repairs for Reliable readers and writers, and application notification
of events.

CoreDX DDS threading is configurable through the DomainParticipant’s
CoreDX_ThreadModelQosPolicy.

CoreDX DDS Programmer’s Guide

224

20.2.1 Single Threaded Configuration

CoreDX DDS features a single threaded model for higher performance on
significantly resource constrained single threaded devices. Eliminating
threads allows CoreDX DDS to eliminate much of the locking code, and
reduce the amount of context switches required by the application, helping
to reduce the required memory and CPU resources.

The single threaded model requires the application to periodically “hand
over” CPU time to CoreDX DDS to perform it work (discovery, reading data,
writing data, maintaining liveliness, etc.). Otherwise, this single threaded
model uses the same API as the multi-threaded model. There are no new
libraries to link with. This ensures there is not a completely new API to
learn, and makes it easy to move applications from multi-threaded to single-
threaded modes (and back again).

The CoreDX DDS release packages contain example code illustrating the use
of the single threaded mode. This example can be found in the examples
directory, “hello_nothr”. If you look at hello_pub.c in this example, you will
find that the 'no threads' programming model has a very simple API.

First, use the CoreDX_ThreadModelQoSPolicy on the DomainParticipant to
configure CoreDX DDS to use the single threaded model.

QoS Policy Default
Value

Description

CoreDX_ThreadModelQosPolicy

use_threads (unsigned char) 1 (true) Setting use_threads to 0 (false) will
configure CoreDX DDS to use the
single threaded model.

Next, provide CoreDX DDS with time to perform work. It is important to
provide CoreDX DDS with enough opportunities to run so that it can manage
its internal tasks. This entails inserting calls to
DDS_DomainParticipant_do_work() at strategic points in your 'main'
program.

DomainParticipant::do_work(duration_t time)

225

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

The application provides CoreDX DDS a duration in which it can perform its
internal work. The do_work call will return when this time expires.

20.2.1.1 Single Threaded Mode and DDS Blocking Calls

When a DataWriter method blocks (for example, DataWriter::write() when
configured with appropriate QoS settings to allow it to block), do_work()
will be automatically excuted for the duration of the blocking time.

20.2.1.2 Single Threaded Mode and WaitSets

WaitSets in a single threaded mode are not supported.

20.2.2 Listener Thread Configuration

CoreDX DDS can create a 4th thread (only applicable when using the multi
threaded model) that will handle application listener callbacks.

In the standard 3-thread threaded model, application listener callbacks are
handled by the work thread (along with discovery, writing data, and
maintaining liveliness). This means that a long-running application defined
listener callback (for example, in a DataReader’s on_data_available listener
callback) can block CoreDX DDS from performing other internal tasks.

The solution for those applications that cannot reduce their listener callback
functions is to create a separate thread for listener callbacks. With the
listener thread enabled, an application can block inside a listener callback
without effecting other DDS operations.

QoS Policy Default
Value

Description

CoreDX_ThreadModelQosPolicy

create_listener_thread (unsigned
char)

0 (false) Setting create_listener_thread to 1
(true) will configure the
DomainParticipant to create the
4th thread for application callbacks.
This option is applicable only when
use_threads is set to non-zero
(true).

CoreDX DDS Programmer’s Guide

226

227

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Chapter 21 Transmit Buffers

21.1 Overview

Each CoreDX DDS DataWriter contains a transmit buffer to hold data that is
waiting to be published.

Transmit buffers usually hold sample data from DataWriter::write() calls,
but can also hold instance lifecycle information including unregister or
dispose actions. Both built-in DataWriters and application defined
DataWriters contain these transmit buffers.

By default, transmit buffers are dynamic, that is, they grow and shrink as
necessary to minimize the amount of memory consumed by the CoreDX
DDS infrastructure. CoreDX DDS transmit buffers can be configured to be a
static size, or configured to be dynamic with specified minimum and
maximum sizes.

21.2 Dynamic Transmit Buffers

CoreDX DDS transmit buffers are by default, dynamic. Without any
configuration, DataWriter transmit buffers will grow and shrink as necessary
to support the size of data written while consuming a minimal amount of
memory.

CoreDX DDS transmit buffer sizes can be configured with a QoS policy, or
with environment variables. The DataWriter QoS policy to configure the
minimum and maximum buffer sizes is described in the following table.

Table 21-1: Transmit Buffer Configuration

QoS Policy Default
Value

Description

DataWriter_RTPSWriterQoSPolicy
(application-definied DataWriters)

min_buffer_size (unsigned int) 16 In bytes, the transmit buffer will
start at this size, and in dynamic
operations, will not shrink smaller

CoreDX DDS Programmer’s Guide

228

than this size.

max_buffer_size (unsigned int) 65400 In bytes, the transmit buffer will
not grow larger than this size.

DataWriter_RTPSWriterQoSPolicy
(built-in DataWriters)

min_buffer_size (unsigned int) 16 For built-in writers, the transmit
buffer will start at this size, and in
dynamic operations, will not shrink
smaller than this size (in bytes).

max_buffer_size (unsigned int) 32768 For built-in writers, the transmit
buffer will not grow larger than
this size (in bytes).

The CoreDX DDS environment variables to configure the transmit buffer size
are: COREDX_MIN_TX_BUFFER_SIZE and COREDX_MAX_TX_BUFFER_SIZE,
and are used in the same manner as the DataWriter QoS policy described
above. These environment variables will override the default sizes of all
DDS entities (both built-in and application defined).

These are the sizes that bound the dynamic sizing of the buffers. The
transmit buffer will not grow beyond max_buffer_size, and the transmit
buffer will not shrink below min_buffer_size.

The maximum transmit buffer size will affect how CoreDX DDS aggregates,
batches, and/or fragments written data. This is particularly noticeable with
applications that perform many, frequent writes, or have bursts of writes.
With a small upper bound on the transmit buffer, CoreDX DDS will need to
perform many individual writes, rather than aggregating or batching
samples together to be sent at one time.

When the application writes a sample that is larger than the configured
maximum transmit buffer size for the DataWriter, CoreDX DDS will fragment
the data sample as necessary to fit the transmit buffer, and re-assemble the
sample on the receiving side before it is available to the receiving
application.

229

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

The environment variable: COREDX_MAX_PACKET_SIZE (available in earlier
CoreDX DDS releases) was equivalent to COREDX_MAX_TX_BUFFER_SIZE.
The MAX_PACKET_SIZE environment variable is deprecated, and should no
longer be used.

21.3 Static Transmit Buffers

Since allocating and de-allocating memory can be expensive operations,
applications interested in very low latencies may benefit from a static
transmit buffer that does not grow or shrink through the life of the
application. This configuration is possible by setting the min_buffer_size
and max_buffer_size to the same value, using either the QoS policies or
environment variables described above.

Special care should be taken before setting a static transmit buffer size.
Since the transmit buffer must be large enough to hold the complete
marshaled data sample, it is important to understand the possible sizes for
all possible application data samples written by the application. This is
especially true when globally configuring static built-in DataWriter transmit
buffers using the environment variables.

CoreDX DDS Programmer’s Guide

230

231

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Chapter 22 Receive Buffers

22.1 Overview

Each CoreDX DDS DomainParticipant contains a receive buffer to hold
incoming data that will be passed to its DataReaders and eventually the
reading application.

Receive buffers are used to hold data read from the transport until is it
processed (parsed) by the CoreDX DDS infrastructure. There is one receive
buffer for each DomainParticipant (as opposed to one for each
DataReader).Receive buffers are dynamic, that is, they grow and shrink as
necessary to minimize the amount of memory consumed by the CoreDX
DDS infrastructure.

22.2 Configuration

The application may set the minimum size of the DomainParticipant’s
receive buffer. This is commonly used when interoperating with other DDS
products, who don’t effectively communicate RTPS message sizes. CoreDX
DDS will “learn” how to size the receive buffer, but it may be forced to drop
some of the initial messages received during this learning period. Starting
with a sufficiently large receive buffer can optimize performance in these
mixed DDS product environments.

The application may set the maximum size of the DomainParticipant’s
receive buffer, which limits the size the receive buffer may grow to. Special
care should be taken when configuriring the maximum receive buffer size.
If the configured maximum size is smaller than the transport’s maximum
message size, CoreDX DDS may be forced to drop received samples.

The minimum and maximum size configuration is located in the transport
configuration – see Part 4:15.1.2Transport Configuration for additional
information.

By default, CoreDX DDS includes information about the RTPS message
length in each RTPS message. This is a CoreDX DDS proprietary submessage
(processed only by CoreDX DDS) that can/should be ignored by other DDS
implementations. CoreDX DDS uses this submessage to optimize the
memory usage of incoming buffers in the CoreDX DDS Transport[s].

CoreDX DDS Programmer’s Guide

232

The Discovery QoS Policy provides a configuration item to control wether or
not this submessage is used:

QoS Policy Default
Value

Description

Discovery QoS Policy

send_msg_submsg (unsigned char) TRUE When TRUE, The RTPS layer will
insert a 'MsgLen' submessage in
every RTPS Messasge.

233

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

CoreDX DDS Programmer’s Guide

234

Chapter 23 Data Batching

Data Batching is the processes of combining data samples into one RTPS
message in order to reduce the network overhead and improve throughput,
especially with smaller samples.

By default, data batching is disabled in CoreDX DDS DataWriters.
DataReaders are configured to accept batch messages by default.
Applications can use the following QoS policies to configure data batching.

QoS Policy Default Value Description

CoreDX_RTPSWriterQosPolicy

enable_batch_msg (unsigned
char or boolean)

0 (or false) Configure the DataWriter to use
batching.

Possible values are: 0 or 1 (false
or true)

CoreDX_RTPSReaderQosPolicy

accept_batch_msg (unsigned
char or boolean)

1 (or true) Configure the DataReader to use
batching.

Possible values are: 0 or 1 (false
or true)

235

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

CoreDX DDS Programmer’s Guide

236

Chapter 24 QoS Provider

24.1 Introduction

The standardized DDS API provides methods to get and set QoS policies on
various DDS entities. Managing QoS policy settings programmatically can prove
to be a burden. Some application deployments benefit from the option of
specifying QoS settings through an external configuration.

To this end, the QoS Provider API provides a mechanism to load QoS policy
settings from an XML document. The QoS Provider then provides access to the
various QoS policies specified in that document, identified by name.

24.2 QoS Provider Usage

The QoS Provider API includes methods to 'get' a specific set of QoS policy
values for a DDS Entity. This QoS can be used in the creation of a DDS Entity or
passed to a set_default_XYZ_qos() or set_qos() call. Once the application has
finished with the QoS, it should be returned to the QoS Provider by means of
the appropriate 'return' call on the QosProvider API.

24.2.1 C Language Binding

First the application must include the appropriate header file:
“dds/qos_provider.h”. Then, the application can instantiate a QoS Provider by
means of the function DDS_QosProvider_newQosProvider(), passing the URI to
the XML document, the name of the profile to be selected from the document,
and the XML parser implementation. CoreDX DDS includes a light-weight XML
parser that can be used (available in the global name cdx_xml_impl,
alternatively the application can provide a parser implementation. For example:

DDS_QosProvider *qos_provider =

DDS_QosProvider_newQosProvider("file://test_qos.xml",

"profile_1",

&cdx_xml_impl);

Then, the qos_provider object can be queried to obtain specific QoS policies by
name; for example:

dp_qos = DDS_QosProvider_get_participant_qos(qos_provider,

"dp_1");

237

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

 if (dp_qos) {

 /* use dp_qos */

 DDS_QosProvider_return_participant_qos(qos_provider, dp_qos);

 } else { /* error */ }

Finally, once the application is finished with the QoS Provider, it must be
destroyed with the following:

DDS_QosProvider_return_provider(qos_provider);

24.2.2 C++ Language Binding

First the application must include the appropriate header file:
“dds/qos_provider.hh”. Then, the application can instantiate a QoS Provider by
means of its constructor, passing the URI to the XML document, the name of the
profile to be selected from the document, and the XML parser implementation.
CoreDX DDS includes a light-weight XML parser that can be used (available in
the global name cdx_xml_impl, alternatively the application can provide a
parser implementation.

For example:

DDS::QosProvider *

 qos_provider = new DDS::QosProvider("file://test_qos.xml",

"profile_1", &cdx_xml_impl);

Now, the qos_provider object can be queried to obtain specific QoS policies by
name; for example:

DDS::DomainParticipantQos * dp_qos;

dp_qos = qos_provider->get_participant_qos("dp_1");

if (dp_qos) {

 // use the dp_qos policy

 qos_provider->return_participant_qos(dpf_qos);

} else { /* error */ }

Finally, once the application is finished with the QoS Provider, it must be
destroyed with the following:

delete qos_provider;

CoreDX DDS Programmer’s Guide

238

24.2.3 C# Language Binding

First the application must 'use' the CoreDX DDS package, for example: use
com.toc.coredx.DDS; Then, the application can instantiate a QoS Provider by
means of its constructor, passing the URI to the XML document, the name of the
profile to be selected from the document. CoreDX DDS includes a light-weight
XML parser that will be used.

For example:

QosProvider qosProvider = new QosProvider("file://test_qos.xml",

"profile_1");

Now, the qos_provider object can be queried to obtain specific QoS policies by
name; for example:

dp_qos = qosProvider.get_participant_qos("dp_1");

if (dp_qos != null) {

 // use the dp_qos policy

} else { /* error */ }

Finally, once the application is finished with the QoS Provider, it can be
destroyed with the following:

qosProvider.cleanup;

24.2.4 Java Language Binding

First the application must import the CoreDX DDS package, for example: import
com.toc.coredx.DDS.*; Then, the application can instantiate a QoS Provider by
means of its constructor, passing the URI to the XML document, the name of the
profile to be selected from the document. CoreDX DDS includes a light-weight
XML parser that will be used.

For example:

QosProvider qosProvider = new

QosProvider("file://test_qos.xml", "profile_1");

239

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Now, the qos_provider object can be queried to obtain specific QoS policies by
name; for example:

DomainParticipantQos dp_qos =

qosProvider.get_participant_qos("dp_1");

if (dp_qos != null) {

 // use the dp_qos policy

} else { /* error */ }

Finally, once the application is finished with the QoS Provider, it can be
destroyed with the following:

qosProvider.cleanup;

24.3 QoS Provider XML Syntax

The syntax for the XML QoS Policy file is fairly straight-forward, and is defined in
the OMG's DDS Consolidated XML Syntax Specification. The syntax is
summarized here with examples.

Each individual QOS policy is mapped to an XML element. The contents of
which define the value of that policy.

The XML representation of QoS policy values is a mapping of the corresponding
IDL types. For example the enumeration HistoryQosPolicyKind looks like this in
IDL:

enum HistoryQosPolicyKind {

 KEEP_LAST_HISTORY_QOS,

 KEEP_ALL_HISTORY_QOS

};

These values are represented by a string with the name of the enumeration
literals, for example:

<kind>KEEP_ALL_HISTORY_QOS</kind>

For pre-defined integral values, a string with the name of the IDL constant is
used, for example:

CoreDX DDS Programmer’s Guide

240

const long LENGTH_UNLIMITED = -1;

is used in XML like this:

<depth>LENGTH_UNLIMITED</depth>

Putting this together, the History QoS policy is specified like this:

<history>

 <kind>KEEP_LAST_HISTORY_QOS</kind>

 <depth>10</depth>

</history>

QoS policies are collected together to specify one of the entity QoS structures:
ParticipantQos, PublisherQos, SubscriberQos, TopicQos, DataReaderQos, and
DataWriterQos. These are encoded respectively in the following XML elements:
<domain_participant_qos>, <publisher_qos>, <subscriber_qos>, <topic_qos>,
<datareader_qos>, <datawriter_qos>.

These XML elements are contained within a <qos_profile> element. Each
profile element may be assigned a name, and that name can be used to select a
certain profile from the QoS Provider API.

A sequence of qos_profile elements can be held within a <qos_library>
element. All of this should be held within a <dds> element.

24.3.1 XML Example

The following XML provides example syntax for all standard QoS policies:

<dds>

<qos_library>

<qos_profile name="default">

<publisher_qos name="pub_default">

<entity_factory>

<autoenable_created_entities>false</autoenable_created_enti

ties>

</entity_factory>

<group_data>

<value>'A',' ','G','R','O','U','P'</value>

</group_data>

241

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

<partition>

<name>

<element>partition_1</element>

<element>partition_2</element>

<element>p*</element>

</name>

</partition>

<presentation>

<access_scope>TOPIC_PRESENTATION_QOS</access_scope>

<coherent_access>TRUE</coherent_access>

<ordered_access>FALSE</ordered_access>

</presentation>

</publisher_qos>

</qos_profile>

<qos_profile name="profile_1">

<participantfactory_qos name="dpf_1">

<entity_factory>

<autoenable_created_entities>false</autoenable_created_enti

ties>

</entity_factory>

</participantfactory_qos>

<participant_qos name="dp_1">

<entity_factory>

<autoenable_created_entities>false</autoenable_created_enti

ties>

</entity_factory>

<user_data>

<value>'A','

','P','a','r','t','i','c','i','p','a','n','t'</value>

</user_data>

<peer_participants>

<value>

<participant_locator>

<participant_id>0</participant_id>

<participant_id_max>10</participant_id_max>

<locator>

<kind>UDPV4_LOCATOR_KIND_QOS</kind>

<port>7410</port>

<addr>10,0,0,5</addr>

</locator>

</participant_locator>

</value>

<strict_match>TRUE</strict_match>

</peer_participants>

<logging>

<flags>0x0040</flags>

</logging>

</participant_qos>

CoreDX DDS Programmer’s Guide

242

<topic_qos name="top_1">

<deadline>

<period>

<sec>10</sec>

<nanosec>500000000</nanosec>

</period>

</deadline>

<destination_order>

<kind>BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS</kind>

</destination_order>

<durability>

<kind>TRANSIENT_LOCAL_DURABILITY_QOS</kind>

</durability>

<durability_service>

<service_cleanup_delay>

<sec>20</sec>

<nanosec>500000000</nanosec>

</service_cleanup_delay>

<history_kind>KEEP_ALL_HISTORY_QOS</history_kind>

<history_depth>-1</history_depth>

<max_samples>LENGTH_UNLIMITED</max_samples>

<max_instances>2</max_instances>

<max_samples_per_instance>3</max_samples_per_instance>

</durability_service>

<history>

<kind>KEEP_ALL_HISTORY_QOS</kind>

<depth>10</depth>

</history>

<latency_budget>

<duration>

<sec>22</sec>

<nanosec>0</nanosec>

</duration>

</latency_budget>

<lifespan>

<duration>

<sec>23</sec>

<nanosec>0</nanosec>

</duration>

</lifespan>

<liveliness>

<kind>MANUAL_BY_PARTICIPANT_LIVELINESS_QOS</kind>

<lease_duration>

<sec>24</sec>

<nanosec>0</nanosec>

</lease_duration>

</liveliness>

<ownership>

<kind>EXCLUSIVE_OWNERSHIP_QOS</kind>

243

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

</ownership>

<reliability>

<kind>RELIABLE_RELIABILITY_QOS</kind>

<max_blocking_time>

<sec>25</sec>

<nanosec>0</nanosec>

</max_blocking_time>

</reliability>

<resource_limits>

<max_samples>100</max_samples>

<max_instances>101</max_instances>

<max_samples_per_instance>102</max_samples_per_instance>

</resource_limits>

<topic_data>

<value>'A',' ','T','o','p','i','c'</value>

</topic_data>

<transport_priority>

<value>501</value>

</transport_priority>

</topic_qos>

<publisher_qos name="pub_1">

<entity_factory>

<autoenable_created_entities>false</autoenable_created_enti

ties>

</entity_factory>

<group_data>

<value>'A',' ','P','u','b'</value>

</group_data>

<partition>

<name></name>

</partition>

<presentation>

<access_scope>TOPIC_PRESENTATION_QOS</access_scope>

<coherent_access>TRUE</coherent_access>

<ordered_access>TRUE</ordered_access>

</presentation>

</publisher_qos>

<subscriber_qos name="sub_1">

<entity_factory>

<autoenable_created_entities>false</autoenable_created_enti

ties>

</entity_factory>

<group_data>

<value>'A',' ','S','u','b'</value>

</group_data>

<partition>

<name>

<element>partition_1</element>

CoreDX DDS Programmer’s Guide

244

<element>partition_2</element>

<element>p*</element>

</name>

</partition>

<presentation>

<access_scope>TOPIC_PRESENTATION_QOS</access_scope>

<coherent_access>TRUE</coherent_access>

<ordered_access>TRUE</ordered_access>

</presentation>

</subscriber_qos>

<datawriter_qos name="dw_1">

<deadline>

<period>

<sec>10</sec>

<nanosec>500000000</nanosec>

</period>

</deadline>

<destination_order>

<kind>BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS</kind>

</destination_order>

<durability>

<kind>TRANSIENT_LOCAL_DURABILITY_QOS</kind>

</durability>

<durability_service>

<service_cleanup_delay>

<sec>20</sec>

<nanosec>500000000</nanosec>

</service_cleanup_delay>

<history_kind>KEEP_ALL_HISTORY_QOS</history_kind>

<history_depth>-1</history_depth>

<max_samples>LENGTH_UNLIMITED</max_samples>

<max_instances>2</max_instances>

<max_samples_per_instance>3</max_samples_per_instance>

</durability_service>

<history>

<kind>KEEP_ALL_HISTORY_QOS</kind>

<depth>10</depth>

</history>

<latency_budget>

<duration>

<sec>22</sec>

<nanosec>0</nanosec>

</duration>

</latency_budget>

245

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

<lifespan>

<duration>

<sec>23</sec>

<nanosec>0</nanosec>

</duration>

</lifespan>

<liveliness>

<kind>MANUAL_BY_PARTICIPANT_LIVELINESS_QOS</kind>

<lease_duration>

<sec>24</sec>

<nanosec>0</nanosec>

</lease_duration>

</liveliness>

<ownership>

<kind>EXCLUSIVE_OWNERSHIP_QOS</kind>

</ownership>

<ownership_strength>

<value>99</value>

</ownership_strength>

<reliability>

<kind>BEST_EFFORT_RELIABILITY_QOS</kind>

<max_blocking_time>

<sec>42</sec>

<nanosec>0</nanosec>

</max_blocking_time>

</reliability>

<resource_limits>

<max_samples>100</max_samples>

<max_instances>101</max_instances>

<max_samples_per_instance>102</max_samples_per_instance>

</resource_limits>

<transport_priority>

<value>501</value>

</transport_priority>

<user_data>

<value>'A',' ','W','r','i','t','e','r'</value>

</user_data>

<writer_data_lifecycle>

<autodispose_unregistered_instances>false

</autodispose_unregistered_instances>

</writer_data_lifecycle>

CoreDX DDS Programmer’s Guide

246

</datawriter_qos>

<datareader_qos name="dr_1">

<deadline>

<period>

<sec>10</sec>

<nanosec>500000000</nanosec>

</period>

</deadline>

<destination_order>

<kind>BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS</kind>

</destination_order>

<durability>

<kind>TRANSIENT_LOCAL_DURABILITY_QOS</kind>

</durability>

<history>

<kind>KEEP_ALL_HISTORY_QOS</kind>

<depth>21</depth>

</history>

<latency_budget>

<duration>

<sec>22</sec>

<nanosec>0</nanosec>

</duration>

</latency_budget>

<liveliness>

<kind>MANUAL_BY_PARTICIPANT_LIVELINESS_QOS</kind>

<lease_duration>

<sec>23</sec>

<nanosec>0</nanosec>

</lease_duration>

</liveliness>

<ownership>

<kind>EXCLUSIVE_OWNERSHIP_QOS</kind>

</ownership>

<reader_data_lifecycle>

<autopurge_nowriter_samples_delay>

<sec>24</sec>

<nanosec>0</nanosec>

</autopurge_nowriter_samples_delay>

<autopurge_disposed_samples_delay>

<sec>25</sec>

247

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

<nanosec>0</nanosec>

</autopurge_disposed_samples_delay>

</reader_data_lifecycle>

<reliability>

<kind>RELIABLE_RELIABILITY_QOS</kind>

</reliability>

<resource_limits>

<max_samples>100</max_samples>

<max_instances>101</max_instances>

<max_samples_per_instance>102</max_samples_per_instance>

</resource_limits>

<time_based_filter>

<minimum_separation>

<sec>27</sec>

<nanosec>0</nanosec>

</minimum_separation>

</time_based_filter>

<user_data>

<value>'A',' ','R','e','a','d','e','r'</value>

</user_data>

</datareader_qos>

<!-- inherit from previous, override 'deadline' -->

<datareader_qos name="dr_2" base_name="dr_1">

<deadline>

<period>

<sec>20</sec>

<nanosec>500000000</nanosec>

</period>

</deadline>

</datareader_qos>

<publisher_qos name="pub_2" base_name="pub_default">

<group_data><value>'A','

','G','R','O','U','P','2'</value></group_data>

</publisher_qos>

<publisher_qos name="pub_3" base_name="default">

</publisher_qos>

</qos_profile>

</qos_library>

</dds>

CoreDX DDS Programmer’s Guide

248

24.4 QoS Provider Integration

The QoS Provider implementation is supported in the C, C++, C# and Java
language bindings.

24.4.1 C Integration

The “C” QoS Provider API is provided in the header file
include/dds/dds_qos_provider.h . Under Linux (or other Unix-like operating
systems), the binary code is available in lib/libdds_qos_provider.a[or .so]. For
Windows, the binary is available in lib/dds_qos_provider_static.lib or
lib/dds_qos_provider.dll.

24.4.2 C++ Integration

The C++ QoS Provider API is provided in the header file
include/dds/dds_qos_provider.hh. Under Linux (or other Unix-like operating
systems), the binary code is available in lib/libdds_cpp_qos_provider.a [or .so].
For Windows, the binary is available in lib/dds_cpp_qos_provider_static.lib or
lib/dds_cpp_qos_provider.dll.

24.4.3 C# Integration

The QoS Provider implementation is included in the CoreDX DDS C# library, and
is available with no further configuration.

24.4.4 Java Integration

The QoS Provider implementation is included in the CoreDX DDS Java library,
and is available with no further configuration.

24.5 Unsupported

The following features are documented in the OMG's DDS Consolidated XML
Syntax Specification, but are not currently supported by CoreDX DDS:

 base64 encoding for octet sequences

 topic_filter for DataReader and DataWriter QoS policy selection

 QoS Profile shorthand (omitting <qos_profile> element)

249

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Chapter 25 Licensing

CoreDX DDS uses development and run-time licenses. A development license is
required for using the CoreDX DDS data type compiler (coredx_ddl). A run-time
license is required for running an application built with the CoreDX DDS library.
Both run-time and development licenses can be contained in the same license
file or in separate files. Here is an example license file containing both
development and run-time licenses:

coredx.lic

#==
CoreDX DDS License file for CompanyX

Created: Jul 22, 2008, by Twin Oaks Computing, Inc.
Contains: Development and run-time licenses

#==

development LICENSE lines:
- Contain your development keys - DO NOT EDIT!
LICENSE PRODUCT=coredx_ddlBUILD=Release OS=linux ARCH=x86 USERID=ntucker

HOSTID=00195b70c3be CUSTOMER=Company_X SIG=abcdefghijklmnopqrstuvwxyz

run-time LICENSE lines:

- Contain your run-time keys - DO NOT EDIT!

LICENSE PRODUCT=coredx_cBUILD=Release HOSTID=00195b70c3be CUSTOMER=Company_X

SIG=abcdefghijklmnopqrstuvwxyz

Figure 25-1: Example CoreDX DDS license file

25.1 Development Licenses

Development licenses are contained in a license file. These development license
keys are required by the CoreDX DDS data type compiler. To develop (compile)
with CoreDX DDS, an environment variable TWINOAKS_LICENSE_FILE must
be set to the full path to the license file.

25.2 Run-time Licenses

There are a few ways to use run-time licenses. Run-time licenses may be
contained in a license file, or otherwise coded into the application and provided
to CoreDX DDS through the license API.

CoreDX DDS Programmer’s Guide

250

1. Use an Environment Variable

The environment variable TWINOAKS_LICENSE_FILE may be set to
one of the following:

 The full path to the license file

 The LICENSE string containing the run-time license

If you have access to the license file from the run-time environment, the
simplest way to use the license is to set a TWINOAKS_LICENSE_FILE
environment variable to be the full path to the license file.

If you do not have access to the license file, you can still use the license by
setting the TWINOAKS_LICENSE_FILE environment variable to the
appropriate run-time LICENSE line. The run-time license line starts with the
following:

LICENSE PRODUCT=coredx_c

Using the license string is a good option for embedded run-time
environments. For the run-time license in the above example license file,
set your TWINOAKS_LICENSE_FILE environment variable like:

linux% export TWINOAKS_LICENSE_FILE=<LICENSE

PRODUCT=coredx_c HOSTID=00195b70c3be CUSTOMER=Company_X

SIG=abcdefghijklmnopqrstuvwxyz>

2. Use the API

The DomainParticipantFactory provides an API to set the license string:

DomainParticipantFactory::set_license(const char * lic)

The lic argument may be set to any of the options that can be used
for the TWINOAKS_LICENSE_FILE environment variable, described
above. That is one of the following:

 The full path to the license file

 The LICENSE string containing the run-time license

The license API is particularly useful for operating systems that do not support
environment variables. This allows the application to obtain the license string in
any manner acceptable by the environment and system requirements, and then
use the API to pass the license string to CoreDX DDS.

251

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

CoreDX DDS Programmer’s Guide

252

253

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

Chapter 26 Transition Notes

Every effort is made to make it easy to upgrade between CoreDX DDS versions.
Even so, there are occasionally changes that impact some aspects either the
CoreDX DDS API or wire protocol. Those changes are documented in this
section.

26.1 CoreDX DDS v3.x -> v4.0

26.1.1 C++ Listener Method Signatures

The signature of the listener methods has changed slightly between v3.x and
v4.0. Specifically, the ‘status’ parameter passed to most methods
(on_data_available() is an exception) is ‘const’ in v4.0. Note: Unfortunately, the
c++ compiler doesn’t produce warnings about this, it just quietly doesn’t
overload the method.

Example DataReaderListener:

class Foo_ReaderListener : public DataReaderListener

{

public:

 void on_data_available(DataReader *dr);

 void on_subscription_matched(DataReader *dr,

const SubscriptionMatchedStatus status);

 void on_requested_incompatible_qos (DataReader *dr,

const RequestedIncompatibleQosStatus status);

 void on_liveliness_changed(DataReader *dr,

const LivelinessChangedStatus status);

};

CoreDX DDS Programmer’s Guide

254

Chapter 27 Troubleshooting

27.1 General Troubleshooting Tools

Network communication can be complex to troubleshoot. It is recommended
that the developer become familiar with standard tools available on the
development network. For example, under UNIX, tools such as ifconfig, netstat,
and route can be useful to gain an understanding of the network configuration.
Further, tools that capture and decode network traffic are very useful. The
wireshark tool has wide platform support and includes a protocol analyzer for
RTPS (the DDS wire protocol). Wireshark is an indispensible tool for analyzing
DDS network traffic. (See www.wireshark.org).

Twin Oaks Computing offers a tool that is specially designed for analyzing and
debugging DDS applications: CoreDX DDS Spy. The CoreDX DDS Spy tool
displays, at a glance, all the DDS Entities on the network. This allows the
application developer to quickly view of all the DataReaders and DataWriters on
the network, what Topic they are communicating on, and which ones are not
communicating due to QoS or data type mismatches. In addition, CoreDX DDS
Spy to view all the DDS network traffic, including samples written by DDS
application for further analysis of DDS applications. The CoreDX DDS Spy tool is
also useful in more complex DDS network analysis.

27.2 No Communications between DDS applications

If Readers and Writers are not communicating at all, then there are several
items to check. First, it is recommended that Listeners be installed on both the
reader and writer to handle all of the events. These events may provide insight
into why the entities are not communicating. For example, the
requested_incompatible_qos and offered_incompatible_qos listeners are very
useful.

27.2.1 Network Configuration (if running across a network)

If all your DDS DomainParticipants are running on one machine, skip this
section.

If the DDS DomainParticipants are running across a network, is your network
working? Can you use ping or another program to talk between your hosts?

http://www.wireshark.org/

255

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

27.2.2 Discovery

The first step in DDS communications is the discovery process, where
DomainParticipants broadcast their existence and look for peer
DomainParticipants. This discovery protocol uses multicast.

If your DDS DomainParticipants are communication across routers or a Virtual
Machine, you may need to increase the reach of your multicast packets by
increasing the number of hops (see theCoreDX DDS Transport Chapter for more
information).

27.2.3 DataReader / DataWriter matching

The next step in DDS communications is matching a DataWriter to a
DataReader. Matching requires several compatible attributes:

1. The Topic name must match. Carefully check the create_topic,
create_datawriter, and create_datareader calls to ensure the same Topic
name string is used for both the DataWriter’s Topic and the DataReader’s
Topic.

2. The data types must match. Not only the name of the data type, but also
the types must match. CoreDX DDS serializes the type of the data into a
“typecode”, and compares the typecode of the DataWriter with the
typecode of the DataReader. These types must match.

3. Recall that the QoS setting for the DataReader and DataWriter must be
compatible for communications to occur (see the QoS Compatibility
section).

The SubscriptionMatchedStatus and PublicationMatchedStatus statuses record
matching DataReaders and DataWriters. The OfferedIncompatibleQosStatus
and RequestedIncompatibleQosStatus record mis-matching DataWriters and
DataReaders due to QoS incompatibility. Use Listeners (see the Listeners
section) or Conditions (see the Conditions and WaitSets section) to check these
statuses.

27.3 Missing or lost samples

There are numerous QoS policies that can cause samples to be missing or lost.
A few of the more common ones are described below. In addition, QoS settings
can interact with each other causing non-intuitive application behavior. While
the examples below describe some common problems and solutions, your
specific network environment and other QoS settings may result in application
behavior different than what is described below.

CoreDX DDS Programmer’s Guide

256

Twin Oaks Computing is dedicated to the helping customers get the most out of
their application communications using CoreDX DDS. Please contact us for
additional support with your specific application.

27.3.1 Reliability

If you are communicating over a network, a slow or unreliable network can
cause packets to be lost. Similarly, one “slow” subscribing host can have trouble
keeping up with publishing hosts. Setting the Reliability QoS policy to RELIABLE
can reduce or eliminate lost packets in this scenario.

It is important to note that a RELIABLE Reliability can only happen while both
the DataWriter and DataReader are both in existence. Sometimes, a publishing
application will exit (killing the DataWriter) before the DataReader has received
all the published samples, resulting in lost samples.

27.3.2 Durability

If your DataReader is consistently missing the first one or two samples published
by a DataWriter, chances are the discovery process is not completing (matching
the DataWriter to the DataReader) before those first samples are written. In
general, the solution is to raise the Durability QoS setting to TRANSIENT_LOCAL.
This can have other side effects when combined with other QoS settings (see
the HISTORYsection). Other optionsinclude having the publishing application
wait for a discovered DataReader or simply pause for one or two seconds before
starting to write data; allowing the discovery process to complete.

27.3.3 History

By default, the History QoS policy is set to KEEP_LAST, with a depth of 1 (one).
Consider a DataWriter writing samples fast enough that the CoreDX DDS
infrastructure must queue any before sending, or a DataReader receiving
samples fast enough that they must be queued before a read() or take()
operation is used. With a History that is only keeping the 1 most recent data
sample for each instance, there is a possibility for samples to be dropped. The
solution is to increase the History depth to greater than 1, or set the History to
KEEP_ALL.

There is only one combination of QoS settings that will guarantee samples are
not lost during operations and that is:

 Reliability = RELIABLE

 History = KEEP_ALL

257

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

 Resource Limits = Set

This combination of QoS policies forces the publishing application to block on a
DataWriter::write() operation, if any matched DataReaders is unable to accept
another sample. The DataWriter::write operation will complete (and return)
once all matched DataReaders have enough room to receive an additional
sample.

27.3.4 Putting it all together: Guaranteed Delivery

A common question from DDS users is, “How do I guarantee delivery with DDS?”
The goal is to guarantee all data written by a publishing application will be
delivered to all matched subscribing applications.

There are three QoS policies that need to be configured to guarantee delivery of
data samples:

1. Reliability (kind = RELIABLE)
2. History (kind = KEEP_ALL)
3. Resource Limits (set to something other than

infinite)

All of these QoS policies must be set to ensure delivery of published data.

The RELIABLE Reliability setting allows CoreDX DDS to monitor data reception,
and retransmit data if it is not received by any DataReaders.

The KEEP_ALL History setting instructs CoreDX DDS that it is NOT OK to
overwrite any data samples in the DataWriter’s cache. This is important if there
are any DataReaders that are having trouble “keeping up”, and lots of samples
must be stored for retransmission.

Setting the Resource Limits allows CoreDX DDS to limit the growth of the
DataWriter’s cache, even with the KEEP_ALL History setting. This is important,
not only for resource utilization at run time, but also because it allows the
application’s call to DataWriter::write() to block if there is no more room in the
cache (because at least one DataWriter has not acknowledged a number of sent
samples).

27.4 TypeSupport version mismatch

CoreDX DDS provides strong data typing. Application developers define the
data types that will be used for DDS communications at compile time, and use
the CoreDX data type compiler to generate type specific DDS code for each data

CoreDX DDS Programmer’s Guide

258

type. This generated code interacts very closely with the DDS library to perform
type specific operations (for example, serializing data on a write() and de-
serializing data on a read()). For this reason, it is important that the data type
compiler used to generate the code match the DDS library that is linked into the
application. If these versions do not match, CoreDX DDS will print a warning
message when register_type() is called:

Sample Warning Message for Version Mismatch

WARNING: MyType TypeSupport version does not match CoreDX

Library version.

This may cause software instability or crashes.

Figure 27-1: Example CoreDX DDS license file

To resolve this issue, re-generate your type specific code with the correct
version of the CoreDX data type compiler, and check the version of libdds.a that
you are linking with your application.

27.5 Can’t find it here?

Call us at 720-733-7906, send an email to support@twinoakscomputing.com, or
check out our Frequently Asked Questions at
http://www.twinoakscomputing.com/coredx/faq, or visit our online forums at
http://www.twinoakscomputing.com/forums.

mailto:support@twinoakscomputing.com
http://www.twinoakscomputing.com/coredx/faq

259

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

CoreDX DDS Programmer’s Guide

260

Chapter 28 About Twin Oaks Computing

Twin Oaks Computing, Inc is a company dedicated to developing and
delivering quality software solutions. We leverage our technical experience
and abilities to provide innovative and useful services in the domain of
intelligence systems.

Twin Oaks Computing specializes in high-performance and embedded
communications solutions for commercial and DoD applications. Our
CoreDX DDS was first released in 2008. In March 2009, Twin Oaks
Computing participated in the first public multi-vendor DDS interoperability
demonstration. For more information on our products, please visit our
website at http://www.twinoakscomputing.com.

Twin Oaks Computing is headquartered in Castle Rock, CO. Our staff has
over 30 years of experience developing and supporting DoD systems. We
have performed installs and upgrades of critical mission systems at U.S.
military facilities around the world. Through this experience, we understand
the importance of the systems that collect, manage, and distribute
information for the warfighter.

We apply our technical experience to develop solutions in the following
Intelligence Domains:

 Tactical Communications - Link 16, IBS, Link 11, Link 11B

 Tactical Data Correlation - Single and Multi-INT Correlation

 Situational Awareness - consolidated display of tactical data

We have Technical experience in the following areas:

 Networking - Ethernet, IP, UDP, TCP, RDMA

 Device Drivers - MILSTD-1553, Serial, Network Interface

 Interprocess Communication - DDS, Sockets, CORBA, RPC, SysV IPC

 Operating Systems - SolarisTM, LinuxTM, FreeBSDTM, VxWorksTM, and others

 Database Technologies - SybaseTM, OracleTM, MySQLTM, and others

261

CoreDX Data Distribution Service – Programmer’s Guide

Version 3.4.0

 Network Services - email servers, HTTP servers, DNS servers, firewalls

 System Security - DCID 6/3 security accreditation

 System Administration - scripting languages, backup/restore, storage
management, software installation/configuration

We would be happy to discuss how we can help you. Please contact us at
contact@twinoakscomputing.com.

mailto:contact@twinoakscomputing.com

CoreDX DDS Programmer’s Guide

262

Chapter 29 Contact Information

Have a question? Don’t hesitate to contact us by any means convenient for
you:

Web Site: http://www.twinoakscomputing.com

Email: support@twinoakscomputing.com

Twitter: @CoreDX_DDS

Phone: 720.733.7906

 +33(0)9 62 23 72 20

Address:

 755 Maleta Lane

 Suite 203

 Castle Rock, CO, 80108

http://www.twinoakscomputing.com/
mailto:support@twinoakscomputing.com

