

CoreDX DDS

Secure

Powerful protection for data communications

Programmer’s Guide

Version 5.6

April 2021

 2018-07-25

 3

CoreDX DDS Secure– Programmer’s Guide Version 4.2

Copyright 2008-2021 Twin Oaks Computing, Inc, 230 Third Street, Ste 260 Castle Rock, Colorado 80104
U.S.A. All rights reserved.

This document describes how to install and use the CoreDX DDS Secure software.

CoreDX, CoreDX DDS, and the CoreDX DDS logo are trademarks of Twin Oaks Computing, Inc. Object
Management Group, OMG, and DDS are trademarks of the Object Management Group. All other
products or company names mentioned are used for identification purposes only, and may be trademarks
of their respective owners.

DISCLAIMER OF WARRANTY. THIS DOCUMENT IS PROVIDED "AS IS” AND ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED,
EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

4

Preface

CoreDX DDS Secure is a secure version of CoreDX DDS - small-footprint, high-
performance communications middleware compliant with the OMG Data Distribution
Service (DDS) standard. CoreDX DDS Secure supports multiple hardware architectures
and operating systems, and is intended to facilitate the development of robust, near
real-time, highly distributed, and secure systems.

This manual describes how to install and use CoreDX DDS Secure. It is for developers
who want to integrate a high-performance, OMG compliant data distribution
middleware service into their application.

How this Guide is Organized

This document contains a number of Sections that describe the standardized DDS
Security Plug-ins, the CoreDX DDS Security Plug-in implementation, and how to
configure and use the CoreDX DDS Security plug-ins.

Related Documentation

CoreDX DDS Programmer’s Guide

CoreDX DDS Reference Manuals

CoreDX DDS Type System

Intended Audience

This document is intended for software developers who are deploying CoreDX DDS
Secure systems. The guide assumes that the reader is competent in programming
languages and software development concepts. CoreDX DDS supports multiple
programming languages, and this guide includes examples in C++.

2

Typographic Conventions

Typeface Meaning Examples

Courier Example code struct StringMsg

{

 string msg;

};

Courier Example Commands gunzip –c coredx-2.x.tar.gz

Figure 0-1: Typographic Conventions

Feedback

Twin Oaks Computing welcomes your comments. We are interested in
improving our products and we welcome your comments and suggestions.
You can provide email feedback about this document to
documents@twinoakscomputing.com.

3

CoreDX DDS Secure– Programmer’s Guide Version 4.2

Table of Contents

Preface 4

How this Guide is Organized .. 4

Related Documentation ... 4

Intended Audience .. 4

Typographic Conventions .. 2

Feedback .. 2

Part 1: Introduction .. 7

Chapter 1 An Introduction to CoreDX DDS ... 9

1.1 Why DDS? ... 9

1.2 The case for Middleware .. 9

1.3 The case for Publish SubscribeDDS .. 10

1.4 The case for CoreDX DDS .. 16

Part 2: CoreDX DDS Secure .. 20

Chapter 1 Introduction .. 22

Chapter 2 CoreDX DDS Security Plug-in Overview .. 24

2.1 Integration .. 24

2.2 Cryptographic Technology .. 24

2.3 Configuration .. 25

Chapter 3 CoreDX DDS Security Plug-in Configuration ... 26

3.1 Domain Governance Document ... 26

3.2 Permissions Document ... 31

3.3 Certificate Authorities and Identity Certificates ... 36

3.4 Impact of DomainGovernance and Permissions .. 37

3.5 CoreDX DDS Security Plug-In Run-Time Configuration ... 40

3.6 CoreDX DDS Security Plug-In Run-Time Environment .. 47

Chapter 4 Security Logging ... 48

Chapter 5 Creating Certs and Signing Docs with OpenSSL .. 49

5.1 Certificates .. 49

4

5.2 Signing Documents.. 53

Chapter 6 Example Code ... 55

Chapter 7 Caveats .. 57

7.1 rtps_protection = SIGN ... 57

7.2 rtps_protection = ENCRYPT ... 57

Chapter 8 References .. 58

Chapter 9 About Twin Oaks Computing .. 59

Chapter 10 Contact Information.. 61

5

CoreDX DDS Secure– Programmer’s Guide Version 4.2

6

Table of Figures

Figure 0-1: Typographic Conventions .. 2
Figure 1-1: Middleware .. 10
Figure 1-2: Client Server Architecture ... 11
Figure 1-3: Publish Subscribe Architecture .. 11
Figure 1-4: Example DDS Usage ... 12
Figure 1-5: DDS Architecture ... 15

7

CoreDX DDS Secure– Programmer’s Guide Version 4.2

Part 1: Introduction

This section provides an introduction of the Data Distribution Service (DDS)
and the CoreDX DDS implementation from Twin Oaks Computing, Inc.

CoreDX DDS Secure Programmer’s Guide

8

9

CoreDX DDS Secure– Programmer’s Guide Version 4.2

Chapter 1 An Introduction to CoreDX DDS

Welcome to CoreDX DDS, a high-performance, small-footprint
implementation of the OMG Data Distribution Service (DDS) standard. The
CoreDX DDS Data-Centric, Publish-Subscribe messaging infrastructure
provides high-throughput, low-latency data communications.

This chapter provides an overview of the Data Distribution Service (DDS),
how applications might use DDS to meet their communication
requirements, and features of the CoreDX DDS product.

1.1 Why DDS?

Today’s enterprise systems, embedded systems, and all systems in between,
need flexible, open information systems. Most systems span multiple
technologies, hardware platforms, operating systems, and programming
languages. In addition, components of these systems have real-time
requirements. CoreDX DDS is an open standards-based, communication
middleware solution to meet the needs of these real-time distributed
systems.

1.2 The case for Middleware

Middleware is a class of software that exists between an application and the
Operating System. In deeply embedded environments, middleware exists
between the functional software and a network stack of the device. It
provides useful capabilities that are above and beyond those found in
standard Operating Systems. In the case of CoreDX DDS, the middleware
provides a facility for both publish-subscribe and client-server
communications.Figure 1-1 illustrates where middleware components fit in
the application, and how they logically bridge across multiple operating
systems and hardware architectures.

CoreDX DDS Secure Programmer’s Guide

10

Figure 1-1: Middleware

Applications that employ a communications middleware like CoreDX DDS
realize many benefits. The requirements and complexity of data
communications in a distributed system are met by the middleware
component - leaving developers more time to focus on the important
application logic. CoreDX DDS middleware supports many operating
systems and hardware architectures - the task of porting complex
communications software is already complete.

1.3 The case for Publish SubscribeDDS

Many communication middleware technologies are available. Most are
based on a functional model. For example, RPC (Remote Procedure Call)
and CORBA (Object Request Broker) are two examples of middleware that
allow function calls to be distributed across the network between a client
and a server. However, these architectures lead to tight coupling between
the client and the server; this makes these systems difficult to extend.

Client Server

Middleware

Operating
System

System
HARDWARE

Application

Operating
System

HARDWARE

11

CoreDX DDS Secure– Programmer’s Guide Version 4.2

Figure 1-2: Client Server Architecture

The client-server architecture is appropriate for centralized data processing
and works well in some systems and some use cases. In some client-server
technologies, the drawbacks are increased integration costs for new
capabilities and potential single point of failure.

An alternative to this approach is the Publish-Subscribe architecture
embodied in DDS. This architecture promotes a loose coupling between
data producers and data consumers. The architecture is flexible and
dynamic; it is easy to adapt and extend systems to changing environments
and requirements.Figure 1-3 illustrates the DDS Publish Subscribe
architecture where multiple Publishers and Subscribers exchange strongly
typed data through a common Topic. The communications are controlled
by a Quality of Service model.

Figure 1-3: Publish Subscribe Architecture

Figure 1-4is an example of how DDS might be applied in a system. This
example has several sources of “raw data”, a data processor that performs
some processing on the raw data to produce “processed data”, several end
users working with the processed data, and an administrative user
performing analysis, maintenance, or auditing functions.

Publisher

Subscriber

Subscriber

Subscriber

Data Type

Data

QoS

Topic

Publisher

CoreDX DDS Secure Programmer’s Guide

12

Figure 1-4: Example DDS Usage

In this example, the darker blue boxes represent applications
communicating over a DDS network. These applications might be running
together on 1 host, or they might be distributed over multiple hosts. A DDS
application simply publishes or subscribes to their data, without concern for
what, if anything, might be on the other end of its communications. Any of
the applications can be dynamically removed (and new applications may be
added) without impacting the existing network.

Because many systems include some natural publish-subscribe use cases as
well as some natural client-server use cases, the DDS standards include both
communication mechanisms. This document focuses on the publish-
subscribe interface to DDS. For information on programming with the
remote procedure call (RPC) or request reply APIs, please use the CoreDX
DDS RPC over DDS Programmer’s Guide.

1.3.1 DDS is an Open Standard

DDS is an open specification (documented by multiple standards) managed
by the Object Management Group (OMG). The OMG is an international,
open membership, non-profit organization that develops and manages
computer industry specifications. Hundreds of organizations, including
software end-users and commercial vendors, make up the OMG. Together
they develop and manage many of the standards widely used in the
computer industry today. The set of Data Distribution Service (DDS)

13

CoreDX DDS Secure– Programmer’s Guide Version 4.2

standards is an example of one of the technology standards managed by the
OMG. Other examples include the Unified Modeling Language (UML),
Model Driven Architecture (MDA) and the Common Object Request Broker
Architecture (CORBA).

There are several advantages to using a technology that conforms to an
open standard, and more advantages if that open standard is managed by
an open membership organization like the OMG. First, an open standard
promotes interoperability. Anyone, even if they are not connected with the
managing organization, can pick up an Open Standard and write a
conforming application. Second, open standards reduce the dependence on
a particular vendor. When an open standard product is available from
multiple vendors, the consumer can easily change between them. Finally,
anyone can join the managing organization and vote on the direction and
advancement of the technology. In the case of DDS, this means vendors
and users, both public and private, can influence the future of the
technology.

1.3.2 DDS is More than a Communications Middleware

The DDS standards specify the mechanism for moving data – a typical
communications middleware technology standard. However, DDS is so
much more. In addition to communications, DDS provides advanced data
management, storage, organization, filtering, redundancy, extensibility, and
security. With a rich set of features, interoperability across languages,
operating systems, hardware platforms, and implementations, DDS provides
a robust, secure infrastructure foundation for your small-scale, large-scale,
enterprise, embedded, and everything in between software system.

1.3.3 Remote Procedure Call (RPC) in addition to Publish-Subscribe

The Data Distribution Service is a publish-subscribe technology, which
provides a flexible, loosely coupled architecture suitable for many real-time
applications. However, many sophisticated projects are a natural mix of
publish-subscribe and client-server (or RPC) requirements.

The DDS Standards include API’s for publish-susbscribe, request-response,
and RPC – all implemented on top of the original DDS publish-subscribe
architecture. DDS request-response and RPC have some unique features
over other client-server type middleware, including automatic discovery,
security, and the ability to use the full set of DDS Quality of Service (QoS)
configurations.

CoreDX DDS Secure Programmer’s Guide

14

The CoreDX DDS RPC API is fully described in the CoreDX DDS RPC
Programmer’s Guide.

1.3.4 DDS is flexible and scalable

Applications communicating with DDS might be running together on 1 host,
or they might be distributed over multiple hosts, each with different
architectures and operating systems. Applications using DDS for
communications do not need to know the details of where the other
applications are residing, or even if they exist.

The discovery mechanism built into DDS allows applications to come and go
from a DDS network without requiring any changes to the applications or
the network. This means a new system can be brought into the network,
and start sending or receiving data, without any changes to existing
applications.

1.3.5 DDS is secure

The DDS Security standard contains a complete state-of-the-art security
solution that is completely integrated into the DDS protocols (not simply
layered on top of SSL). DDS Security includes: Identification, Authentication,
Access Control, Integrity, and Confidentiality, allowing the designer full
flexibility on a topic-by-topic level.

Security configuration and usage is documented in the CoreDX DDS Security
Programmer’s Guide.

1.3.6 DDS Features

A DDS application can be a publisher of data, a subscriber of data, or both.

A Publisher is responsible for data distribution. It may publish data of
different data types. The application uses a typed DataWriter attached to
the publisher to communicate the data to be published. Both the Publisher
and the DataWriter have a Quality of Service (QoS) that affects the behavior
of the publication.

A Subscriber is responsible for receiving published data and making it
available to the receiving application. It may receive data of different data
types. The application uses a typed DataReader attached to the subscriber
to access the data. Both the Subscriber and DataReader have a QoS that
affects the behavior of the subscription. The subscribing application can

15

CoreDX DDS Secure– Programmer’s Guide Version 4.2

choose to block waiting for data using WaitSets or receive data
asynchronously, using Listeners.

A Topic fits between publications and subscriptions. Subscriptions must be
able to refer to specific publications. A topic fulfills this purpose: it
associates a name, a data-type, and a QoS related to the data itself.

When an application wants to publish data of a given type, it must use a
Publisher and DataWriter with all the characteristics of the desired
publication. When an application wants to subscribe to data of a given type,
it must use a Subscriber and DataReader with all the characteristics of the
desired subscription.

The following figure depicts the common DDS objects used in exchanging
data.

Figure 1-5: DDS Architecture

The following describes the actions depicted in Figure 1-5.

1. DataReaders and DataWriters are associated with a Topic

2. The publishing application calls DataWriter::write() to write the data

3. The Publisher publishes the data

4. The Subscriber receives the data

5. The Listener notifies the subscribing application of available data

CoreDX DDS Secure Programmer’s Guide

16

6. The subscribing application calls DataReader::read() to access the data

1.4 The case for CoreDX DDS

The CoreDX DDS provides a quality, high-performance, very small footprint
implementation of the DDS standards, including the original publish-
subscribe DDS API, RTPS wire protocol, X-Types, RPC over DDS, and DDS
Security.

1.4.1 CoreDX DDS is Fast

CoreDX DDS was built from the ground up with performance in mind. The
engineering staff at Twin Oaks Computing has a long history of writing and
maintaining real-time and near real-time software, and this expertise was
used in creating CoreDX DDS. CoreDX DDS is written in ‘C’ (with additional
application language bindings available)for low overhead and memory
savings. The CoreDX DDS baseline is tested and enhanced for performance
at every step of the development process. The result is a quality DDS
implementation with extremely low latency and high throughput capacity.

CoreDX DDS data aggregation, multi-core data pipeline, and low latency
event notification provide for throughput in the +900Mbps range and
latencies below 75 usec over a 1Gbps ETHERNET network. But don’t take
our word for it. The CoreDX DDS release includes source code for example
benchmarking applications. Use these examples to compile your own
benchmark tests and see how CoreDX DDS performs in your environment,
with your data.

1.4.2 CoreDX DDS is Small

The CoreDX DDS product is 100% designed and developed by Twin Oaks
Computing to meet the OMG’s DDS specification. There is no historical
code, no code borrowed from the open source community, no code
retrofitted to meet the CoreDX DDS requirements. This allows us to deliver
a quality, fully-functional DDS implementation with the smallest footprint.
Our entire core library is less than 500 KB, and runs in environments with as
little as 100 KB of RAM. The full CoreDX DDS implementation is deployed on
FPGA’s, DSP’s, PLC’s, ECU’s and other embedded environments.

This small library size comes with a proportionally small Line of Code Count,
perfect for safety critical applications requiring DO-178B certification.

17

CoreDX DDS Secure– Programmer’s Guide Version 4.2

CoreDX DDS is modular and contains additional run-time memory tuning
parameters. Space constrained projects can select components of CoreDX
DDS to meet their requirements, and tune those components to reduce
unnecessary memory utilization.

For those environments that are even smaller: true microcontrollers,
CoreDX DDS Micro requires no more than 8K of RAM, allowing the benefit
of the interoperability DDS protocols down to the component level of any
system.

CoreDX DDS Micro is documented in the CoreDX DDS Micro Programmer’s
Guide.

1.4.3 CoreDX DDS is Proven & Robust

The small footprint CoreDX DDS software has over 10 years of deployment
usage in a wide variety of mission-critical, and business-critial applications.

With over 1 million deployed instances around the world and in space,
connecting components in surgical devices, military and commercial
vehicles, space exploration platforms, electrical grids, CoreDX DDS has a
proven track record of reliability, robustness, and compentent technical and
business support.

1.4.4 CoreDX DDS is Secure

CoreDX DDS complies with the DDS Security standards, providing integrated
and sophisticated security features that are fully configurable. Using state-
of-the-art security algorithms, The DDS Security standard was designed to
meet the requirements of military and critical national infrastructure
systems.

System designers may choose to use the standards compliant Twin Oaks
Computing developed security plug-ins for identification, authentication,
access control, integrity, and confidentiality, or develop their own with the
standardized plug-in API.

1.4.5 CoreDX DDS Uses Multi-Core Technologies

Hardware is moving to multiple core technology. Even embedded
processors are shipping with more than one core. This presents a challenge
to application developers, because making use of multiple cores requires
complex code that is difficult and expensive to develop and maintain. The
solution: use a multithreaded communications middleware like CoreDX DDS.

CoreDX DDS Secure Programmer’s Guide

18

CoreDX DDS was architected from the start to take advantage of multi-core
environments. With advanced threading and protections, each CoreDX DDS
participant will use a minimum of 3 cores, and typical CoreDX DDS
applications will use between 4and 8 cores. These are single threaded
applications, taking advantage of quad-core and higher hardware, just by
using CoreDX DDS for data communications.

1.4.6 CoreDX DDS is Self Contained

In order to use CoreDX DDS for communications, the application links in the
appropriate CoreDX DDSlibraries and that is it. With no daemons and no
operating system services that need to be started and maintained, there is
no place for data to become “stuck” or for communication states to become
corrupted.

1.4.7 CoreDX DDS has Comprehensive Platform Support

With the wide array of language binding, operating system and architecture
support, CoreDX DDS runs on a wide variety of platforms, from enterprise
servers, to common desktop configurations, to embedded environments
and real-time operating systems, to FPGA’s and ‘bare-metal’ configurations.

1.4.8 CoreDX DDS has a great team behind it

A quality DDS implementation is important. But the organization behind the
implementation is critical. When you make a commitment to purchase a
software product, you are not only obtaining the rights to run the software
contained on the installation disk (or downloaded from the web). You are
also obtaining support services, training services, and product
enhancements for at least the next year.

The staff at Twin Oaks Computing has been developing and supporting large
software systems and global software companies for over 50 years. We
have worked beside soldiers in Kuwait, sailors onboard aircraft carriers, and
other warfighters around the world. We have supported commercial IoT
and IIoT companies with millions of products deployed world-wide. We
understand not only the importance of delivering a software product that
works, but also the importance of helping companies and their end users
make the most of their investment.

We will do the same for you. Give us a call or send us an email. We
promise you will receive prompt, friendly, and helpful service.

19

CoreDX DDS Secure– Programmer’s Guide Version 4.2

CoreDX DDS Secure Programmer’s Guide

20

Part 2: CoreDX DDS Secure

The section describes CoreDX DDS Secure – configuration and use.

21

CoreDX DDS Secure– Programmer’s Guide Version 4.2

CoreDX DDS Secure Programmer’s Guide

22

Chapter 1 Introduction

CoreDX DDS versions 4.0 and later support the standardized DDS Security
protocol and plug-in architecture. The DDS Security model provides for the
following:

• Authentication of DDS entities,

• Authorization of DDS entities,

• Integrity of data and protocol messages,

• Confidentiality of data, and

• Non-repudiation of data

The security architecture is based on a plug-in approach, where the security
functions are provided by a set of plug-in components. As such, a system
may provide alternate implementations for each security function. For
example, a user could provide his own implementation of the cryptographic
algorithms.

23

CoreDX DDS Secure– Programmer’s Guide Version 4.2

CoreDX DDS includes an implementation of the standardized security plug-
ins. These plug-ins can be used as-is, or can form the basis of a customized
implementation.

This document presumes that the reader is familiar with DDS concepts. For
the appropriate DDS background, please see the CoreDX DDS Programmer's
Guide [58].

CoreDX DDS Secure Programmer’s Guide

24

Chapter 2 CoreDX DDS Security Plug-in Overview

The CoreDX DDS Security Plug-in provides an implementation that complies
with the DDS Security standards. The plug-in implementation includes
identification, access control, integrity, cryptographic, and logging functions.

2.1 Integration

The CoreDX DDS Security Plug-in integrates with the CoreDX DDS
middleware infrastructure via the standardized API defined in the DDS
Security standard [58]. The CoreDX DDS Secure distribution includes the
standardized plug-in ports to support integration of a secure plug-in
implementation. It is possible to operate the secure distribution without
installing a plug-in, in which case, the DDS middleware operates the
standard DDS protocol without any specific security facilities.

2.2 Cryptographic Technology

The CoreDX DDS Security Plug-in utilizes PKI certificates for identification
and authentication. It also employs the Diffie-Hellman key exchange
algorithm (ECDH or DH+MODP) to establish symmetric keys used for data
integrity and encryption. The plug-in uses the GCM and GMAC algorithms
for fast and efficient symmetric key cryptography; these algorithms support
AES-128 and AES-256 bit encryption.

The CoreDX DDS Security Plug-in depends on a 3rd party cryptographic
library to provide these functions. While not all cyprto libraries are
available on all CoreDX DDS supported platforms, the following list provides
a summary of CoreDX DDS crypto library dependencies. Contact Twin Oaks
Computing for details of supported crypto libraries on specific target
platforms.

CoreDX DDS v5.6.0 and later support the following cryptographic libraries:

 OpenSSL v1.1.1k (Linux builds?)

 WolfSSL v4.4

CoreDX DDS v4.3.0 through v5.5.2 support the following cryptographic
libraries:

 OpenSSL v1.0.2f

25

CoreDX DDS Secure– Programmer’s Guide Version 4.2

 WolfSSL v4.4

CoreDX DDS versions 4.0 through v4.3.0 support the following cryptographic
libraries:

 OpenSSL v1.0.2f

 WolfSSL v4.3.0

2.3 Configuration

The CoreDX DDS Security Plug-in supports configuration through the use of
two XML formatted documents: the Domain Governance document and the
Permissions document. Together, these two documents control the
behavior of the security plug-in, including how domains are controlled and
which entities have permission to publish or subscribe on various topics.
These documents are described in detail in subsequent sections of this
document.

CoreDX DDS Secure Programmer’s Guide

26

Chapter 3 CoreDX DDS Security Plug-in
Configuration

3.1 Domain Governance Document

The Domain Governance document configures how DDS Domains will be
controlled from a security perspective. This includes item such as:

• if all DDS data will be clear text, signed, or encrypted and signed,

• whether access is restricted to only authenticated Participants (that is,
Participants in possession of a valid identity certificate signed by the
Authentication CA)

• if and how DDS discovery data is protected

• if and how DDS liveliness data is protected

The DomainGovernance document is an XML document that complies with
the standardized XSD in the OMG Consolidated XML standard. The
document should have a top-level <dds> element that contains a single
<domain_access_rules> element. The <domain_access_rules> element can
include any number of <domain_rule> elements.

3.1.1 3.1.1 domain_rule element  

The <domain_rule>element defines the security configuration for one or
more DDS Domains. Each <domain_rule> element contains the following

elements and sections:  

• <domains> element

• <discovery_protection_kind> element

• <liveliness_protection_kind> element

• <allow_unauthenticated_join> element

• <enable_join_access_control> element

• <topic_access_rules> element, containing topic rules

The contents and delimiters of each Section are described below.

27

CoreDX DDS Secure– Programmer’s Guide Version 4.2

3.1.2 domains element

The <domain_rule>applies to the DDS domains specified in the <domains>
element. The <domains> element contains one or more <id> and
<id_range> elements. The <id> element text body should contain a single
integer number that identifies a DDS Domain ID. The <id_range>element
contains a <min> and <max> element, each of which contain a single integer
number as their text body.

For example, a single domain:

<domains>

 <id>0</id>

</domains>

Or a single range of domains:

<domains>

 <id_range>

 <min>10</min>

 <max>20</max>

 </id_range>

</domains>

Or a combination:

<domains>

 <id>0</id>

 <id_range>

 <min>10</min>

 <max>20</max>

 </id_range>

</domains>

 A domain_rule element applies to a DomainParticipant if the Participant's
domain_id falls in the set of ids specified in the <domains> element. During
operation, the <domain_rule> elements are searched in the order they are
listed in the document. If multiple rule elements match, the first is selected.
If no rule elements apply, then the domain is uncontrolled.

3.1.3 discovery_protection_kind element

The discovery protection element specifies the protection kind applied to
the secure builtin DataWriter and DataReader entities used for discovery:
SEDPbuiltinPublicationsSecureWriter,
SEDPbuiltinSubscriptionsSecureWriter,

CoreDX DDS Secure Programmer’s Guide

28

SEDPbuiltinPublicationsSecureReader,
SEDPbuiltinSubscriptionsSecureReader. The discovery protection kind
element may take three possible values: NONE, SIGN, or ENCRYPT. The
specified protection is applied at the metadata (submesage) level.

For example:

<liveliness_protection_kind>SIGN</liveliness_protection_

kind>

3.1.4 liveliness_protection_kind element

The liveliness protection element specifies the protection kind applied to
the builtin DataWriter and DataReader associated with the
ParticipantMessageSecure builtin Topic used for communication of
liveliness. The discovery protection kind element may take three possible
values: NONE, SIGN, or ENCRYPT. The specified protection is applied at the
metadata (submesage) level.

For example:

<liveliness_protection_kind>SIGN</liveliness_protection_

kind>

3.1.5 allow_unauthenticated_join element

This element controls if unauthenticated participants are allowed to join the
DDS Domain. If set to TRUE, then the Participant will match with remote
Participants even if they cannot be authenticated. If set to FALSE, then a
remote participant that cannot be authenticated will essentially be ignored.
This element may take the binary values TRUE or FALSE.

For example:

<allow_unauthenticated_participants>FALSE</allow_unauthe

nticated_participants>

3.1.6 enable_join_access_control element

This element determines whether or not remote Participant matching is
controlled by the Permissions document. If set to TRUE, then matching a
remote Participant is controlled by the Permissions document (that is,
match only if the remote participant permissions must indicate that they are
allowed to publish or subscribe to a topic in the domain). If set to FALSE,

29

CoreDX DDS Secure– Programmer’s Guide Version 4.2

then a remote participant is matched without consulting the Permissions.
This element may take the binary values TRUE or FALSE. For example:

<enable_join_access_control>TRUE</enable_join_access_con

trol>

3.1.7 topic_access_rules element

The topic_access_rules element contains any number of <topic_rule>
elements.

3.1.7.1 topic_rule element

Each <topic_rule> element contains

• topic_expression element

• enable_discovery_protection element

• enable_read_access_control element

• enable_write_access_control element

• metadata_protection_kind element

• data_protection_kind element

3.1.7.1.1 topic_expression element

The value in this element identifies the set of DDS Topic names to which the
rule applies. The rule will apply to any DataReader or DataWriter associated
with a Topic whose name matches the value. The Topic name expression
syntax and matching complies with the syntax and rules of the POSIX
fnmatch() function as specified in POSIX 1003.2-1992, Section B.6 [38].

For example:

<topic_expression>Square*</topic_expression>

3.1.7.1.2 enable_discovery_protection element

This element may take the binary values TRUE or FALSE. It controls whether
the discovery information for the topic[s] covered by this rule is exchanged
in the clear via the standard discovery builtin topics, or protected with the
secured builtin topics.

For example:

CoreDX DDS Secure Programmer’s Guide

30

<enable_discovery_protection>TRUE</enable_discovery_prot

ection>

3.1.7.1.3 enable_read_access_control element

This element may take the binary values TRUE or FALSE. This controls
whether or not access controls are applied to the reading permission on the
topic[s] covered by this rule.

For example:

<enable_read_access_control>TRUE</enable_read_access_con

trol>

3.1.7.1.4 enable_write_access_control element

This element may take the binary values TRUE or FALSE. This controls
whether or not access controls are applied to the writing permission on the
topic[s] covered by this rule.

For example:

<enable_write_access_control>TRUE</enable_write_access_c

ontrol>

3.1.7.1.5 metadata_protection_kind element

This element may take the binary values: NONE, SIGN, or ENCRYPT.

The setting of this element controls the protection kind applied to the RTPS
SubMessages (for example: Data, HeartBeat, AckNack), sent by any
DataWriter and DataReader on the topic[s] covered by this rule.

For example:

<metadata_protection_kind>ENCRYPT</metadata_protection_k

ind>

Because this protection applies to the entire sub-message, it will effectively
apply to any application data contained therein.

31

CoreDX DDS Secure– Programmer’s Guide Version 4.2

3.1.7.1.6 data_protection_kind element

This element may take three possible values: NONE, SIGN, or ENCRYPT.

The setting of this element shall specify the protection kind applied to the
payload data (application data) sent by any DataWriter on the topic[s]
covered by this rule.

For example:

<data_protection_kind>ENCRYPT</data_protection_kind>

With this setting, only the application data is protected; the meta-data
contained in the the data header or in handshaking sub-messages is not
protected (see metadata_protection_kind).

3.2 Permissions Document

The Permissions document grants or denies publish and subscribe
permission on topics to individual Participants. The participants are
identified by the 'Subject Name' contained in their Identity certificate. The
Permissions document is an XML document that complies with the
standardized XSD in the OMG Consolidated XML standard.

ThePermissions document may be consulted to check for the permission to
create or match a participant, topic, reader or writer, based on the settings
in the DomainGovernance file.

The document should have a <dds> element containing a <permissions>
element that contains any number of <grant> elements. Each <grant>
element should include the following elements:

• <subject_name> element

• <validity> element

• Rules

◦ <allow_rule> element[s]

◦ <deny_rule> element[s]

◦ <default> element

CoreDX DDS Secure Programmer’s Guide

32

3.2.1 subject_name element

The subject name section identifies the DomainParticipant to which the
grant section applies. Each grant section in the Permissions document
should have a unique subject name. That is, a subject name should appear
only once in the Permissions document.

The contents of the <subject_name> element must must match the X.509
subject name for the DomainParticipant as is given in its Identity Certificate.

The X.509 subject name is a set of name-value pairs. The format of X.509
subject name shall be the string representation of the X.509 certificate
subject name as defined in IETF RFC 4514 "Lightweight Directory Access
Protocol (LDAP): String Representation of Distinguished Names" [51].

For example:

<subject_name>/C=US/ST=CO/O=Acme Inc/CN=CN_TEST_DDS-

SECURITY_ACME/emailAd dress=so@acme.com</subject_name>

3.2.2 validity element

The contents of the validity element indicate the valid dates for the grant
element. It contains both the starting date and the end date in GMT
formatted as YYYYMMDDHH.

A grant section with a validity date that does not include the current date at
which the permissions are being evaluated shall be ignored.

3.2.3 Rules

The permissions assigned to the DomainParticipant are described as a set of
rules (allow, deny, and default). The rules are applied in the same order
that appear in the document. Each rule includes the domain_id, topic
name, the partitions, and the data-tags associated with the DataWriter or
DataReader; these are referred to as the 'matching criteria' or simply
'criteria'.

If the criteria for the rule matches the domain join or publish/subscribe
operation that is being attempted, then the allow or deny decision is
applied. For example, rules are checked when the application creates a
DataReader or DataWriter and also when a considering matching with a
remote DataReader or DataWriter.

33

CoreDX DDS Secure– Programmer’s Guide Version 4.2

If the criteria for a rule does not match the operation being attempted, the
evaluation shall proceed to the next rule. If all rules have been examined
without a match, then the decision specified by the “default” rule is applied.
If the default rule is not present, the default decision is DENY.

For a rule to match, the domain_id, topic, partitions, and data-tags criteria
must match. For the 'topic' criterion to match it is sufficient that one of the
topic expressions listed matches (i.e., an OR of the expressions with the
<topics> section). For the 'partition' criterion to match, it is sufficient for
one of the partition names associated with the entity (Reader/Writer) to
match one of the partition expressions within one of the <partitions>
elements. If the <partitions> element is not present, it is treated as if a
single 'empty string' partition is specified. For the data-tag criterion to
match, it is required that all of the data-tags associated with the entity
(Reader/Writer) be present in one of the <data_tags> elements.

Each rule (whether it be an allow or deny rule) includes:

• a <domains> element

• any number of <publish> elements

• any number of <subscribe> elements

The <domains> element indicates which domain_id[s] are impacted by the
rule; it includes any number of <id> and <id_range> elements specifying a
set of domain_ids to which the rule applies. The <publish> and <subscribe>
elements each identify one or more topic names (or topic name patterns)
and optionally the associated partitions and data tags.

3.2.4 allow_rule element

The <allow_rule> element is a member of the <grant> element. Allow rules
appear inside the <allow_rule> XML Element. Each allow rule contains the
domain IDs to which the rule applies, and any number of <publish> and
<subscribe> elements. The <publish> and <subscribe> elements contain
the following:

• a set of the topic names (topic name expressions) that are allowed to be
published and subscribed;

• a list of lists of partition names, allowing access if at least one of the
names listed matches one of the names in the Partition QoS of the
entity in question; and,

CoreDX DDS Secure Programmer’s Guide

34

• a list of lists of data tags that must be present in the DataTags QoS of
the entity in question.

3.2.5 deny_rule element

The <deny_rule> element is a member of the <grant> element. Deny rules
appear inside the <deny_rule> XML Element. Each deny rule contains the
domain IDs to which the rule applies, and any number of <publish> and
<subscribe> elements. The <publish> and <subscribe> elements contain
the following:

• a set of the topic names (topic name expressions) that are denied from
being published and subscribed;

• a list of lists of partition names, denying access if at least one of the
names listed matches one of the names in the Partition QoS of the
entity in question; and,

• a list of lists of data tags that must not be present in the DataTags QoS
of the entity in question.

3.2.6 default element

The <default> element is a member of the <grant> element. It should
contain the text “ALLOW” or “DENY”. If no allow_rule or deny_rule is found
that matches the entity in question, then the specified default action is
applied. If the default element is absent, then the default action is set to
DENY.

3.2.7 domains element

The <domains> element contains one or more <id> or <id_range> elements.
Its format is the same as the domains element in the DomainGovernance.

3.2.8 publish element

The <publish> element can include any number of <topics>, <partitions>,
and <data_tags> elements. An entity is tested against each of these criteria
to determine a match for the containing rule (allow or deny).

3.2.9 subscribe element

The <subscribe> element can include any number of <topics>, <partitions>,
and <data_tags> elements. An entity is tested against each of these criteria
to determine a match for the containing rule (allow or deny).

35

CoreDX DDS Secure– Programmer’s Guide Version 4.2

3.2.10 topics element

The <topics> element can include one or more <topic> elements. Each
<topic> element contains a topic name expression text string. The topic
name expression syntax follows the syntax and rules of the POSIX fnmatch()
function as specified in POSIX 1003.2-1992, Section B.6 [38].

For example:

<topics>

<topic>Secure_*</topic>

<topic>Square</topic>

</topics>

3.2.11 partitions element

The <partitions>element contains one or more <partition> elements. Each
<partition>element contains a DDS Partition name. Partition names may be
given explicitly or by means of Partition name expressions. Each partition
name or partition-name expression appears separately in a <partition>
element within the <partitions> element.

The partition name expression syntax and matching uses the syntax and
rules of the POSIX fnmatch() function as specified in POSIX 1003.2-1992,
Section B.6 [38]. If there is no <partitions> Section then the rule allows
publishing only in the "empty string" partition. See PARTITION QosPolicy
entry in Qos Policies table of section 2.2.3 (Supported Qos) of the DDS
Specification version 1.4.

For example:

 <partitions>

 <partition>A1</partition>

 <partition>B*</partition>

 </partitions>

3.2.12 data_tags element

The <data_tags> element contains one or more <data_tag>elements. Each
<data_tag> element must include a <name> and <value> element. Each of
the <name> and <value> elements contains a string, together identifying a
(name,value) pair.

CoreDX DDS Secure Programmer’s Guide

36

For example:

 <data_tags>

 <data_tag><name>varA</name><value>123</value></dat

a_tag>

 <data_tag><name>varB</name><value>123 East

Main</value></data_tag>

 </data_tags>

3.2.13 Example <grant> elements

The following <grant> section would allow publishing of only a topic named
“Square” on domain 0 under partition “A”.

<grant name="TWINOAKS_grant_all_domain_0">

<subject_name>/C=US/ST=CO/O=Twin Oaks

Computing/CN=CN_TEST_DDS/emailAddress=sup

 port@twinoakscomputing.com</subject_name>

<validity>

<not_before>2016-01-01T00:00:00</not_before>

<not_after>2018-01-01T00:00:00</not_after>

</validity>

<allow_rule>

<domains>

<id>0</id>

</domains>

<publish>

<topics>

<topic>Square</topic>

</topics>

 <partitions>

 <partition>A</partition

 </partitions>

</publish>

</allow_rule>

<default>DENY</default>

</grant>

3.3 Certificate Authorities and Identity Certificates

The CoreDX DDS Security Plugin utilizes standard PKI certificates to support
identification and authentication.

The plugins can make use of two distinct Certificate Authorities (CAs); one
for Authentication and one for Permissions. The system can also be
configured such that a single CA is used for both purposes. The creation and
management of certificates is outside the scope of the plugin functionality,
but is described below for the purpose of example.

37

CoreDX DDS Secure– Programmer’s Guide Version 4.2

The Authentication CA is used to validate identity credentials. Each
'identity certificate' used to identify a DomainParticipant must be signed by
the Authentication CA, and will be validated against the Authentication CA
at runtime.

The Permissions CA is used to validate the Domain Governance and
Permissions XML documents. These configuration documents must be
signed by the Permissions CA, and will be validated against the Permissions
CA at runtime.

The Identity Certificate is used to identify a DomainParticipant. This
certificate must include a Subject Name (CN) field. This value (subject
name) is used as an index into the Permissions Document to select the
appropriate permissions that apply to the associated Participant. Further,
the plugin must have access to the 'private key' that is associated with this
certificate, so that it can sign authentication handshake tokens that will be
validated against the public Identity Certificate as part of the the
Authentication process. The private key is often protected with a
passphrase to control access. If the private key is so protected, the
passphrase can be configured so that the plugin can decode the private key.

3.4 Impact of DomainGovernance and Permissions

The DDS Security Plugins, once configured, operate internally to the
middleware. The plugins augment the behavior of the standard DDS API.
The application software does not interact directly with the plug-in
implementation. Some DDS API routines can fail or return different error
codes based on the configuration and operation of the security plugins. For
example, the security configuration disallow the creation (or enabling) of a
Reader on a particular topic; as a result, Subscriber::create_datareader() or
DataReader::enable() might fail where they normally would succeed.

The following sections indicate how the standard security plug-in
implementation impacts the behavior of the DDS API.

3.4.1 Enable Participant

If the applicable DomainGovernance document enable_join_access_control
element is set to TRUE, then the creation of a DomainParticipant is
controlled by the DomainGovernance document and the Permissions
document; otherwise, the creation of Participants is not controlled.

CoreDX DDS Secure Programmer’s Guide

38

If participant creation is controlled, then the following conditions are
applied:

If the DomainGovernance document specifies any topics on the
DomainParticipant domain_id with enable_read_access_control set to
FALSE or with enable_write_access_control set to FALSE, (that is, if the
participant has access to an uncontrolled topic) then the operation shall
succeed and return TRUE.

If the Permissions document contains a grant element for the
DomainParticipant and the grant contains an allow rule on the
DomainParticipant's domain_id, then the enable operation shall proceede.

3.4.2 Create Topic

The DomainGovernance document is searched for a matching topic name or
topic-expression for the associated domain_id. If found, then the
enable_write_access_control and enable_read_access_control flags are
checked – if either is set to FALSE then the Participant is allowed to create
the topic. If both read and write access control is enabled (TRUE), then the
Permissions document is consulted to located a matching 'grant' element
that allows publish or subscription on the topic. If such element is found,
the topic creation is allowed; otherwise, the 'default' element determines if
the creation is allowed or denied.

3.4.3 Create DataWriter

The create_datawriter() operation is not directly impacted by the Security
Plug-in. However, if the Publisher QoS “autoenable_created_entities” is
TRUE, then the create_datawriter() operation will call 'enable()' on the
DataWriter. If the enable fails (see 38Enable DataWriter) then
create_datawriter() will return NULL.

3.4.4 Enable DataWriter

During the DataWriter enable() operation, the Security Plug-in is consulted
to determine if the DataWriter is permitted. First, the DomainGovernance
document is searched for a matching topic name or topic-expression for the
associated domain_id. If found, then the enable_write_access_control flag
is checked – if it is set to FALSE then the DataWriter is allowed, and the
enable() operation is allowed to proceed. If write access control is enabled
(TRUE), then the Permissions document is consulted to located a matching
'grant' element that allows publishing on the topic. If such element is

39

CoreDX DDS Secure– Programmer’s Guide Version 4.2

found, the DataWriter enable is allowed; otherwise, the 'default' element
determines if the enable operation is allowed or denied. A matching grant
rule considers the topic_name, as well as the partition[s], and data_tag[s] in
the DataWriter QoS.

If the enable operation is denied by the Security Plug-in, then an error of
NOT_ALLOWED_BY_SEC is returned.

3.4.5 Create DataReader

The create_datareader() operation is not directly impacted by the Security
Plug-in. However, if the Subscriber QoS “autoenable_created_entities” is
TRUE, then the create_datareader() operation will call 'enable()' on the
DataReader. If the enable fails (see 39Enable DataReader) then
create_datareader() will return NULL.

3.4.6 Enable DataReader

During the DataReader enable() operation, the Security Plug-in is consulted
to determine if the DataReader is permitted. First, the DomainGovernance
document is searched for a matching topic name or topic-expression for the
associated domain_id. If found, and the associated
enable_read_access_control flag is set to FALSE, then the DataReader is
allowed, and the enable operation can proceed. If not found, or if the read
access control is enabled (TRUE), then the Permissions document is
consulted to located a matching 'grant' element that allows subscribing on
the topic. If such element is found, the DataReader enable is allowed;
otherwise, the 'default' element determines if the enable is allowed or
denied. A matching grant rule considers the topic_name, as well as the
partition[s], and data_tag[s] in the DataReader QoS.

If the enable operation is denied by the Security Plug-in, then an error of
NOT_ALLOWED_BY_SEC is returned.

3.4.7 Matching Remote Participant

If the applicable DomainGovernance document enable_join_access_control
element is set to TRUE, then the matching of a DomainParticipant is limited
by the DomainGovernance document and the Permissions document.

CoreDX DDS Secure Programmer’s Guide

40

3.4.8 Matching Remote DataReader

The DomainGovernance document is searched for a matching topic or topic-
expression for the participant's domain_id. If found, and
enable_read_access_control set to FALSE, then the match is allowed.

Otherwise, the Permissions document is searched for a applicable grant
element (allow or deny rule), considering the subject_name, domain_id,
topic_name, the partition[s], and the data_tag[s]. If an 'allow subscription'
rule is found, then the match is allowed. If a 'deny subscription' rule is
found, the match is denied.

If no matching rule is found, then the 'default' rule is applied, either
allowing or denying the match.

3.4.9 Matching Remote DataWriter

The DomainGovernance document is searched for a matching topic or topic-
expression for the participant's domain_id. If found, and
enable_write_access_control set to FALSE, then the match is allowed.

Otherwise, the Permissions document is searched for a applicable grant
element (allow or deny rule), considering the subject_name, domain_id,
topic_name, the partition[s], and the data_tag[s]. If an 'allow publication'
rule is found, then the match is allowed. If a 'deny publication' rule is found,
the match is denied.

If no matching rule is found, then the 'default' rule is applied, either
allowing or denying the match.

3.5 CoreDX DDS Security Plug-In Run-Time Configuration

The configuration of the security plugins is provided via the
DomainParticpantQos; specifically, the 'properties' QosPolicy. The
'properties' policy is a sequence of name-value pairs. There are several
standardized property names that are used to configure the Security
plugins.

41

CoreDX DDS Secure– Programmer’s Guide Version 4.2

The following properties are required to configure properties of the CoreDX
DDS Security plug-ins:

Property Name Value Description

"dds.sec.auth.identity_ca" The URL that identifies the Certificate of the Authentication CA.
This certificate is used to validate authentication information.

"dds.sec.auth.identity_certificate" The URL that identifies the Certificate of the DomainParticipant.
This is the 'identity' of the participant, and must be signed via the
provided Authentication CA.

"dds.sec.auth.private_key" This is the URL that identifies the PRIVATE key associated with the
participant 'identity' certificate.

"dds.sec.auth.password" This is a 'passphrase' used to access the PRIVATE key (if required).

"dds.sec.access.permissions_ca" A URL that identifies the certificate of the Permissions CA. This
certificate is used to validate permissions information.

"dds.sec.access.governance" A URL that contains the Domain Governance XML document. This
document must be 'signed' by the Permissions CA.

"dds.sec.access.permissions" A URL that contains the Permissions XML document. This
document must be signed by the Permissions CA.

"com.toc.sec.create_plugins" This identifies the name of the dynamic library containing the
implementation of the security plugins. Further, it includes a
function name to call to initialize the library.

“com.toc.sec.kx_aesbits” Sets the key size for the KeyExchange builtin topic.

(default 256)

“com.toc.sec.dr_aesbits” Sets the key size for application created DataReader[s].

(default 128)

“com.toc.sec.dw_aesbits” Sets the key size for application created DataWriter[s].

(default 128)

CoreDX DDS Secure Programmer’s Guide

42

“com.toc.sec.shared_secret_algorithm” Sets the algorithm used to derive shared secrets for key
derivation.

“com.toc.sec.log_level” Set the level of security logging: EMERGENCY, ALERT, CRITICAL,
etc. Impacts the verbosity of the security logging.

“com.toc.sec.log_file” Set the name of the local file where security logging is recoreded.

“com.toc.sec.log_publish” Boolean flag (0 or 1) indicating if security logging entries should be
published on the built-in DDS Logging topic.

CoreDX DDS supports the 'file:' and 'data:' URL kinds for the various
property values that identify a URL. Each property is described in detail
below.

3.5.1 dds.sec.auth.identity_ca

This property must be configured with a URL that contains the certificate of
the Authentication CA. This certificate is used to validate authentication
information. The certificate should be in PEM format.

For example:

"file:CA_Identity_cert.pem", or

“data:,-----BEGIN CERTIFICATE-----

MIIDjDCCAnQCCQCxXfSqVVsCvjANBgkqhkiG9w0BAQUFADCBhzELMAkG

A1UEBhMC

...

NmwIbJfu+GOhaP/MW6Pio1eTNI7HusuMFj+tsphc79bDkU1UxW8wmqBs

OVJFFlIq

-----END CERTIFICATE-----”

3.5.2 dds.sec.auth.identity_certificate

This property must be configured with a URL that contains the Identity
Certificate that will be used to identify this DomainParticipant to the
network. The certificate should be in PEM format.

For example:

"file:DP1_cert.pem", or

../../../CA_Identity_cert.pem
../../../CA_Identity_cert.pem
../../../CA_Identity_cert.pem
../../../CA_Identity_cert.pem
../../../CA_Identity_cert.pem
../../../CA_Identity_cert.pem

43

CoreDX DDS Secure– Programmer’s Guide Version 4.2

“data:,-----BEGIN CERTIFICATE-----

VQQIDAJNQTEPMA0GA1UEBwwGQm9zdG9uMSIwIAYDVQQKDBlPTUctRERT

IFNJRyAo

...

NBgApgohasrvKSK3ZrORuehSsvA3fqkatIJIGry+0/N1Z7sf3RhCl9sB

urW2o5EC

r64v

-----END CERTIFICATE-----”

3.5.3 dds.sec.auth.private_key

This property must be configured with the private key that corresponds to
the Identity Certificate. This key is used during security handshake to
establish identification with peers. The certificate should be in PEM format.

For example:

"file:DP1_private_key.pem", or

“data:,-----BEGIN RSA PRIVATE KEY-----

Proc-Type: 4,ENCRYPTED

DEK-Info: DES-EDE3-CBC,AC4536BB9894B622

HlDuyaM2I0YzI7CvXU1XtgRrAcsBzOmIt4fIZaoWqJJDXFsjb2UVnifj

akeVkEPR

...

u36htaR2wdf9wZk9FD3qjoXkrqS1Y7QUE830fcQ4dYAeRzHaMCq7dL1C

A47zeSWN

-----END RSA PRIVATE KEY-----”

NOTE: The private key associated with the participant identity certificate is
sensitive, and must be protected from disclosure. Invalid access to a
public identity cert and the private key would allow a participant to
masquerade as that identity. System level procedures and protections are
required to mitigate this risk.

3.5.4 dds.sec.auth.password

If the private key is protected with a pass-phrase, that pass-phrase must be
configured in this property.

For example:

“data:,the_pass_phrase”

NOTE: The private key (and pass-phrase) associated with the participant
identity certificate is sensitive, and must be protected from disclosure.

../../../CA_Identity_cert.pem
../../../CA_Identity_cert.pem
../../../CA_Identity_cert.pem
../../../CA_Identity_cert.pem
../../../CA_Identity_cert.pem
../../../CA_Identity_cert.pem
../../../CA_Identity_cert.pem
../../../CA_Identity_cert.pem
data:,the_pass_phrase
data:,the_pass_phrase
data:,the_pass_phrase

CoreDX DDS Secure Programmer’s Guide

44

Invalid access to a public identity cert and the private key would allow a
participant to masquerade as that identity. System level procedures and
protections are required to mitigate this risk.

3.5.5 dds.sec.access.permissions_ca

This property must be configured with a URL that contains the certificate of
the Permissions CA. This certificate is used to validate permissions
information. The certificate should be in PEM format.

For example:

"file:CA_Permissions_cert.pem", or

“data:,-----BEGIN CERTIFICATE-----

MIIEszCCA5ugAwIBAgIJAP5qAf9jZ9GBMA0GCSqGSIb3DQEBBQUAMIGX

MQswCQYD

...

6Zg41sG0AdbxjEb8A+6LSUOIgV4rS9wTU2NrG91MoHpgL4atz1RI81gk

NtzTZxO4

K8KV2pG15w==

-----END CERTIFICATE-----”

3.5.6 dds.sec.access.governance

This property must be configured with a URL that contains the signed
DomainGovernance document. This data should be in S/MIME format.

For example:

"file:test_domain_gov.pkcs7"

3.5.7 dds.sec.access.permissions

This property must be configured with a URL that contains the signed
Permissions document. This data should be in S/MIME format.

For example:

"file:test_permissions.pkcs7"

../../../CA_Identity_cert.pem
../../../CA_Identity_cert.pem
../../../CA_Identity_cert.pem
../../../CA_Identity_cert.pem
../../../CA_Identity_cert.pem
../../../test_domain_gov.pkcs7
../../../test_permissions.pkcs7
../../../test_permissions.pkcs7
../../../test_permissions.pkcs7
../../../test_permissions.pkcs7
../../../test_permissions.pkcs7

45

CoreDX DDS Secure– Programmer’s Guide Version 4.2

3.5.8 com.toc.sec.create_plugins

This property must be configured with the library name and function name
used to initialize the security plugins. At run-time, the CoreDX DDS code will
attempt to load the named dynamic library and locate the named function.
The format of the property is “library_name:function_name”.

For example:

"dds_security:DSREF_create_plugins"

This will cause CoreDX DDS to search for a library named “dds_security”,
“dds_security.so”, “libdds_security.so”, “libdds_security.dylib”, and
“dds_security.dll”, in that order. The first matching library found will be
opened, and will be searched for the function name.

Alternatively, the plugin can be linked directly into the application. In this
case, the library_name should be left blank, and the current executable will
be search for the named function.

If the function name is found, it is invoked and the return value is expected
to be a pointer to a set of security plugins, in the following structure:

 typedef struct DDS_SecurityPlugins

 {

 DDS_Security_Authentication * auth;

 DDS_Security_AccessControl * access_control;

 DDS_Security_CryptoKeyFactory * crypto_key_factory;

 DDS_Security_CryptoKeyExchange * crypto_key_exchange;

 DDS_Security_CryptoTransform * crypto_transform;

 DDS_Security_Logging * logging;

 DDS_ReturnCode_t (* destroy_plugins) (struct

DDS_SecurityPlugins * plugins);

 } DDS_SecurityPlugins;

The CoreDX DDS Security Plug-in implementations use the function name
DSREF_create_plugins for the entry point.

3.5.9 com.toc.sec.kx_aesbits

This property can be configured to override the default AES encryption bits
(256) used by the builtin Key Exchange topic. It can be set to “128” or

CoreDX DDS Secure Programmer’s Guide

46

“256”. For interoperability, the default of 256 bits is recommended.
Further, the Key Exchange topic should be protected with encryption that is
at least as strong as the keys being exchanged in the topic data.

3.5.10 com.toc.sec.dr_aesbits

This property can be configured to override the default AES encryption bits
(128) used by any application created DataReader. It can be set to “128” or
“256”.

3.5.11 com.toc.sec.dw_aesbits

This property can be configured to override the default AES encryption bits
(128) used by any application created DataWriter. It can be set to “128” or
“256”.

3.5.12 com.toc.sec.shared_secret_algorithm

Sets the algorithm used to derive shared secrets for key derivation. The
valid values are the following:

 “DH+MODP-2048-256”

 “ECDH+prime256v1-CEUM”

Default (if property is not specified): “ECDH+prime256v1-CEUM”.

3.5.13 com.toc.sec.log_level

Set the level of security logging. This impacts the verbosity of the security
logging. The valid values are the following:

Level Value

EMERGENCY 0

ALERT 1

CRITICAL 2

ERROR 3

NOTICE 4

INFORMATIONAL 5

DEBUG 6

47

CoreDX DDS Secure– Programmer’s Guide Version 4.2

3.5.14 com.toc.sec.log_file

This property is used to specify the name of a file to send security logging
information. By default, the file is “/tmp/DDS_SecurityLog_GUIDBYTES”.
Where GUIDBYTES is made up of the hex values of the twelve bytes of the
Domain Participant GUID prefix.

3.5.15 com.toc.sec.log_publish

This property controls whether or not security logging messages are
published on the built-in DDS Security Logging topic. If the property is set to
a non-zero value, then the messages are published; otherwise, they are not.

3.6 CoreDX DDS Security Plug-In Run-Time Environment

If configured to load the Security Plug-in from a dynamic library, then the
library must be included in the dynamic library search paths. For example
LD_LIBRARY_PATH in Unix environments and PATH in Windows
environments.

Further, the CoreDX DDS Security Plug-in implementation requires a crypto
library (eg: OpenSSL’s libcrypto.so or crypto.dll) be available. It can be
linked dynamically or statically. If linked dynamically, it must be included in
the dynamic library search path.

Refer to section 2.2 Cryptographic Technology for a full list of supported
crypto libraries.

CoreDX DDS Secure Programmer’s Guide

48

Chapter 4 Security Logging

The Security Plug-in API includes a facility to access security logging
information either through a callback mechanism, a logging file, or by a
built-in DDS “SecurityLogging” topic. Configuration of the security logging is
configured when the plug-in is created via properties, as described in
Section 40CoreDX DDS Security Plug-In Run-Time Configuration.

49

CoreDX DDS Secure– Programmer’s Guide Version 4.2

Chapter 5 Creating Certs and Signing Docs with
OpenSSL

The OpenSSL project includes a comprehensive cryptographic library and a
command line application that can be used to perform many cryptographic
tasks including generation of PKI certifcates and signing documents. While
most deployments will use a key management service to ensure the proper
handling of key material, we show the process of using the OpenSSL utility
to generate the necessary tasks for the CoreDX DDS security plugin.

5.1 Certificates

The CoreDX DDS Security Plugin utilizes standard PKI certificates to support
identification and authentication. These certificates can be created through
the use of the 'openssl' command line utility.

5.1.1 Identity Certificate Authority

The openssl command line utility can generate PKI certificates and keys.
The certificate generation process is controlled by a configuration file. The
configuration file controls aspects of the certificate generation process. For
further information about this configuration file, see the OpenSSL
documentation. An example is provided below:

OpenSSL example Certificate Authority configuration file.

[ca]

default_ca = CA_default # The default ca section

[CA_default]

dir = ./identity_ca_files # Where everything is kept

certs = $dir/certs # Where the issued certs

are kept

crl_dir = $dir/crl # Where the issued crl are kept

database = $dir/index.txt # database index file.

#unique_subject = no # Set to 'no' to allow creation of

 # several ctificates with same subject.

new_certs_dir = $dir

CoreDX DDS Secure Programmer’s Guide

50

certificate = ./TESTONLY_identity_ca_cert.pem # The CA certificate

serial = $dir/serial # The current serial number

crlnumber = $dir/crlnumber # the current crl number

 # must be commented for a V1 CRL

crl = $dir/crl.pem # The current CRL

private_key = $dir/private/TESTONLY_identity_ca_private_key.pem

RANDFILE = $dir/private/.rand # private random number file

#x509_extensions = usr_cert # The extentions to add to the

cert

Comment out the following two lines for the "traditional"

(and highly broken) format.

name_opt = ca_default # Subject Name options

cert_opt = ca_default # Certificate options

Extension copying option: use with caution.

copy_extensions = copy

Extensions to add to a CRL. Note: Netscape communicator chokes on

V2 CRLs so this is commented out by default to leave a V1 CRL.

crlnumber must also be commented out to leave a V1 CRL.

crl_extensions = crl_ext

default_days = 365 # how long to certify for

default_crl_days = 30 # how long before next CRL

default_md = sha256 # which md to use.

preserve = no # keep passed DN ordering

A few differece way of specifying how similar the request should

look For type CA, the listed attributes must be the same, and the

optional and supplied fields are just that :-)

policy = policy_match # For the CA policy

[policy_match]

countryName = optional

stateOrProvinceName = optional

organizationName = optional

organizationalUnitName = optional

commonName = supplied

emailAddress = optional

For the 'anything' policy

At this point in time, you must list all acceptable 'object'

types.

[policy_anything]

countryName = optional

stateOrProvinceName = optional

localityName = optional

organizationName = optional

organizationalUnitName = optional

51

CoreDX DDS Secure– Programmer’s Guide Version 4.2

commonName = supplied

emailAddress = optional

[req]

prompt = no

#default_bits = 1024

#default_keyfile = privkey.pem

distinguished_name = req_distinguished_name

#attributes = req_attributes

#x509_extensions = v3_ca

[req_distinguished_name]

#countryName = Country Name (2 letter code)

#countryName_default = US

countryName = US

#countryName_min = 2

#countryName_max = 2

#stateOrProvinceName = State or Province Name (full name)

#stateOrProvinceName_default = CA

stateOrProvinceName = MA

localityName = Boston

#0.organizationName = Organization Name (eg, company)

0.organizationName = OMG-DDS SIG (Identity CA)

#commonName = Common Name (eg, YOUR name)

#commonName_max = 64

commonName = OMG-DDS (Iden CA)

#emailAddress = Email Address

#emailAddress_max = 64

emailAddress = dds@omg.org

After creating the configuration file, the following steps are required to
generate a Identity Certificate Authority and then create an Identity
Certificate for a participant.

Step 1: Initialization of Index and Serial number files

touch identity_ca_files/index.txt

echo "01" > identity_ca_files/serial

Step 2: Generate the Identity CA private key:

openssl genrsa –out \

 identity_ca_files/private/EXAMPLE_identity_ca_private_key.pem 2048

CoreDX DDS Secure Programmer’s Guide

52

Step 3: Generate the self-signed certificate signing request (CSR) for the
Identity CA:

openssl req -config identity_ca_files/identity_ca_openssl.cnf -new \

-key identity_ca_files/private/EXAMPLE_identity_ca_private_key.pem \

-out identity_ca_files/identity_ca.csr

Step 4: Generate the Identity CA Certificate:

openssl x509 -req -days 3650 -in identity_ca_files/identity_ca.csr \

-signkey identity_ca_files/private/EXAMPLE_identity_ca_private_key.pem \

-out identity_ca_files/EXAMPLE_identity_ca_cert.pem

5.1.2 Permissions Certificate Authority

The Permissions CA should have an OpenSSL configuration file similar to the
Identity CA configuration file shown above.

Step 1: Initialization of Index and Serial number files

touch permissions_ca_files/index.txt

echo "01" > permissions_ca_files/serial

Step 2: Generate the Permissions CA private key:

openssl genrsa -out \

permissions_ca_files/private/TESTONLY_permissions_ca_private_key.pem 2048

Step 3: Generate the self-signed certificate signing request (CSR) for the
Permissions CA:

openssl req -config permissions_ca_files/permissions_ca_openssl.cnf -new \

-key permissions_ca_files/private/EXAMPLE_permissions_ca_private_key.pem \

-out permissions_ca_files/permissions_ca.csr

Step 4: Generate the Identity CA Certificate:

openssl x509 -req -days 3650 -in permissions_ca_files/permissions_ca.csr \

-signkey permissions_ca_files/private/EXAMPLE_permissions_ca_private_key.pem \

-out permissions_ca_files/EXAMPLE_permissions_ca_cert.pem

53

CoreDX DDS Secure– Programmer’s Guide Version 4.2

5.1.3 Identity Certificate

Each participant that participates in secure communications must have an
Identity Certificate. The certificate must include a “Subject Name”. The
subject name is used as an index into the Permissions document to find the
rules that apply to the participant.

Step 1: Generate a CSR for the Participant Identity Certificate:

openssl req -config identity_ca_files/identity_ca_openssl.cnf -new \

-key identity_ca_files/private/EXAMPLE_identity_ca_private_key.pem \

-out example_identity_dds_participant.csr

Step 2: Generate the Participant Identity Certificate (by signing the CSR
with Identity CA cert)

openssl ca -config identity_ca_files/identity_ca_openssl.cnf -days 3650 \

-in example_identity_dds_participant.csr \

-out EXAMPLE_participant_identity_cert.pem

5.2 Signing Documents

The DomainGovernance and Permissions documents that control the plug-in
behavior must be signed by a trusted Permissions Certificate Authority. The
resulting signed documents can be verified using PKI techniques. The
CoreDX DDS Security Plug-ins accept the documents in SMIME format.

5.2.1 Signing the DomainGovernance Document

Once the Permissions CA has been established, its certificate and private key
can be used to sign the DomainGovernance file.

openssl smime -sign -in EXAMPLE_governance.xml \

-text \

-out EXAMPLE_governance_signed.p7s \

-signer permissions_ca_files/EXAMPLE_permissions_ca_cert.pem \

-inkey permissions_ca_files/private/EXAMPLE_permissions_ca_private_key.pem

5.2.2 Signing the Permissions Document[s]

The Permissions CA is also used to sign the Permissions file[s].

openssl smime -sign \

-in toc_coredx_dds_certs/EXAMPLE_participant_permissions.xml \

CoreDX DDS Secure Programmer’s Guide

54

-text \

-out EXAMPLE_participant_permissions_signed.p7s \

-signer permissions_ca_files/EXAMPLE_permissions_ca_cert.pem \

-inkey permissions_ca_files/private/EXAMPLE_permissions_ca_private_key.pem

55

CoreDX DDS Secure– Programmer’s Guide Version 4.2

Chapter 6 Example Code

There is some additional code that must be included in an application to
integrate the CoreDX DDS Security Plug-ins. The CoreDX DDS distribution
must support the security plug-in ports; such distributions include the tag “-
sec” in their name.

By configuring a set of properties in the DomainParticipantQos before
creating the participant, the middleware is informed of the need to
instantiate and integrate with the specified security plug-in. The
configuration properties are passed to the plug-ins, and calls are made to
the plug-ins at the appropriate times to check for authentication, access-
control, and perform crypto operations.

The following C++ code illustrates how to set the Security Plug-in
configuration properties. The pattern is similar for other programming
languages.

/* These property names are standardized for the Security plug-in

 * configuration:

 */

#define DDSSEC_PROP_IDENTITY_CA "dds.sec.auth.identity_ca"

#define DDSSEC_PROP_IDENTITY_CERT "dds.sec.auth.identity_certificate"

#define DDSSEC_PROP_IDENTITY_PRIVKEY "dds.sec.auth.private_key"

#define DDSSEC_PROP_IDENTITY_PASSWORD "dds.sec.auth.password"

#define DDSSEC_PROP_PERM_CA "dds.sec.access.permissions_ca"

#define DDSSEC_PROP_PERM_GOV_DOC "dds.sec.access.governance"

#define DDSSEC_PROP_PERM_DOC "dds.sec.access.permissions"

/* The application must configure the URL property values as appropriate

 * for the run-time environment:

 */

static const char *auth_ca_file = "file:./EXAMPLE_identity_ca_cert.pem";

static const char *perm_ca_file = "file:./EXAMPLE_permissions_ca_cert.pem";

static const char *id_cert_file =

 "file:./dds_certs/EXAMPLE_participant_identity_cert.pem";

static const char *id_key_file =

 "file:./dds_certs/private/EXAMPLE_participant_identity_private_key.pem";

static const char * governance_uri = “file:./GOVERNANCE_signed.p7s”;

static const char * permissions_uri = “file:./PERMISSIONS_signed.p7s”;

CoreDX DDS Secure Programmer’s Guide

56

/**

 *

 **/

static void set_property(DDS::PropertySeq * properties, const char * name,

 const char * value)

{

 DDS::Property_t prop;

 prop.name = cpp_strdup(name);

 prop.value = cpp_strdup(value);

 prop.propagate = 0;

 properties->push_back(prop); /* shallow copy */

}

...

DDS::DomainParticipantFactory * dpf = DomainParticipantFactory::get_instance();

DDS::DomainParticipant * participant = NULL;

DDS::DomainParticipantQos dp_qos;

dpf->get_default_participant_qos(dp_qos);

DDS::PropertySeq * properties = &dp_qos.properties.value;

/* AUTHENTICATION: */

set_property(properties, DDSSEC_PROP_IDENTITY_CA, auth_ca_file);

set_property(properties, DDSSEC_PROP_IDENTITY_CERT, id_cert_file);

set_property(properties, DDSSEC_PROP_IDENTITY_PRIVKEY, id_key_file);

/* (optional) passphrase to acces 'private key' */

// set_property(properties, DDSSEC_PROP_IDENTITY_PASSWORD,

// "data:,thereisnopassword");

/* ACCESS CONTROL: */

set_property(properties, DDSSEC_PROP_PERM_CA, perm_ca_file);

set_property(properties, DDSSEC_PROP_PERM_GOV_DOC, governance_uri);

set_property(properties, DDSSEC_PROP_PERM_DOC, permissions_uri);

/* PLUGIN CREATION: */

set_property(properties,

 "com.toc.sec.create_plugins",

 ":DSREF_create_plugins"); /* this loads from 'main' executable */

 // "dds_security_log:DSREF_create_plugins"); /* this loads from

 * dynamic library

 * 'dds_security_log' */

/* once all QoS is initialized, create the participant */

participant = dpf->create_participant(domain_id, dp_qos,

 NULL, STATUS_MASK_NONE);

57

CoreDX DDS Secure– Programmer’s Guide Version 4.2

Chapter 7 Caveats

7.1 rtps_protection = SIGN

This setting is currently not interoperable with RTI Connext. We are working (with other

members of the OMG) to address related issues in the DDS Security Standard. Once the

issues with the standard are resolved, we expect to offer an interoperable implementation of

this option. This incompatibility has been resolved as of 2017-10-01.

7.2 rtps_protection = ENCRYPT

This setting is currently not supported by CoreDX DDS. We are working (with other

members of the OMG) to address related issues in the DDS Security Standard. Once the

issues with the standard are resolved, we expect to offer a working implementation of this

option.

CoreDX DDS Secure Programmer’s Guide

58

Chapter 8 References

1. CoreDX DDS Programmer's Guide,

http://www.twinoakscomputing.com/documents/CoreDX_DDS_Programmers_Guide_v4.pdf

2. DDS Security Standard v1.0, http://www.omg.org/cgi-bin/doc?formal/16-08-01.pdf

http://www.twinoakscomputing.com/documents/CoreDX_DDS_Programmers_Guide_v4.pdf
http://www.omg.org/cgi-bin/doc?formal/16-08-01.pdf

59

CoreDX DDS Secure– Programmer’s Guide Version 4.2

Chapter 9 About Twin Oaks Computing

Twin Oaks Computing, Inc is a company dedicated to developing and
delivering quality software solutions. We leverage our technical experience
and abilities to provide innovative and useful services in the domain of
intelligence systems.

Twin Oaks Computing specializes in high-performance and embedded
communications solutions for commercial and DoD applications. Our
CoreDX DDS was first released in 2008. In March 2009, Twin Oaks
Computing participated in the first public multi-vendor DDS interoperability
demonstration. For more information on our products, please visit our
website at http://www.twinoakscomputing.com.

Twin Oaks Computing is headquartered in Castle Rock, CO. Our staff has
over 30 years of experience developing and supporting DoD systems. We
have performed installs and upgrades of critical mission systems at U.S.
military facilities around the world. Through this experience, we understand
the importance of the systems that collect, manage, and distribute
information for the warfighter.

We apply our technical experience to develop solutions in the following
Intelligence Domains:

 Tactical Communications - Link 16, IBS, Link 11, Link 11B

 Tactical Data Correlation - Single and Multi-INT Correlation

 Situational Awareness - consolidated display of tactical data

We have Technical experience in the following areas:

 Networking - Ethernet, IP, UDP, TCP, RDMA

 Device Drivers - MILSTD-1553, Serial, Network Interface

 Interprocess Communication - DDS, Sockets, CORBA, RPC, SysV IPC

 Operating Systems - SolarisTM, LinuxTM, FreeBSDTM, VxWorksTM, and others

 Database Technologies - SybaseTM, OracleTM, MySQLTM, and others

CoreDX DDS Secure Programmer’s Guide

60

 Network Services - email servers, HTTP servers, DNS servers, firewalls

 System Security - DCID 6/3 security accreditation

 System Administration - scripting languages, backup/restore, storage
management, software installation/configuration

We would be happy to discuss how we can help you. Please contact us at
contact@twinoakscomputing.com.

mailto:contact@twinoakscomputing.com

61

CoreDX DDS Secure– Programmer’s Guide Version 4.2

Chapter 10 Contact Information

Have a question? Don’t hesitate to contact us by any means convenient for
you:

Web Site: http://www.twinoakscomputing.com

Email: support@twinoakscomputing.com

Twitter: @CoreDX_DDS

Phone: 720.733.7906

Address:

 230 Third Street
 Suite 260
 Castle Rock, CO, 80104

http://www.twinoakscomputing.com/
mailto:support@twinoakscomputing.com

