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Preface 

CoreDX DDS is a small-footprint, high-performance communications middleware compliant with the 

OMG Data Distribution Service (DDS) standard.  CoreDX DDS Secure supports multiple hardware 

architectures and operating systems, and is intended to facilitate the development of robust, near real-

time, highly distributed, and secure systems. 

 

This manual describes how to use CoreDX DDS type system.  It is intended as a companion to the 

CoreDX DDS Programmer‟s Guide for developers who want to integrate a high-performance, OMG 

compliant data distribution middleware service into their application. 

 

How this Guide is Organized  

This document contains a number of Sections that describe the possible primitive and constructed data 

types, including syntax for defining these data types statically and dynamically, and the individual 

language binding details. 

  

Related Documentation 

CoreDX DDS Programmer‟s Guide 

CoreDX DDS Reference Manuals 

 

Intended Audience 

This document is intended for software developers who are developing and deploying CoreDX DDS 

systems.  The guide assumes that the reader is competent in programming languages and software 

development concepts.  CoreDX DDS supports multiple programming languages, and this guide 

includes examples in multiple languages.
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1 Introduction 
The Extensible and Dynamic Types for DDS (X-Types) standard provides a robust and flexible 

specification of the data types for use in the Data Distribution Service (DDS) middleware.  In 

conjunction with the IDL 4 specification, the X-Types standard introduces several new concepts for 

data types that enhance the options for defining, discovering, extending, and interacting with 

application defined data types. 

 

There are many motivations for the X-Types and IDL 4 update.  First, the update formally defines the 

data type system used by DDS;  this includes the full range of available data types, interfaces, and data 

augmentation (for example, keys). Second, the type system supports type evolution and type 

inheritance; important concepts for large and long-lived systems.  Third, the standard includes a full 

API for the DynamicType and DynamicData concepts; providing the ability to define types at run-time.  

Finally, the system adds a few new data types that were missing from traditional IDL. 

 

This document presents the full data type system available to CoreDX DDS users, and then explores 

some advanced data type designs that demonstrate the use of the new features available with IDL 4 and 

X-Types. 
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1.1 Overview 

The X-Types standard includes the primitive and constructed types from the previous IDL based type 

system.  In addition, the standard introduces two new types: map and bitmask.  The 'map' type 

represents a collection of pairs.  A pair is composed of a 'key' and a 'value'.  The map provides the 

ability to retrieve a 'value' given a 'key'.  The bitmask type represents an ordered set of boolean flags.  

This type allows for more compact representation of a set of boolean flags.  The string types are 

composed of characters of either 8 or 32 bits (string and wstring, respectively).   

 

Some types that existed previously have been enhanced.  For example, the enum type can now specify 

its size: from 1 to 32 bits.  Previously, enum instances were all 32 bits. 

 

The IDL 4.0 and X-Types standards build upon the previously used Interface Definition Language 

(IDL) as a language for type definition.  It defines some small modifications to the existing IDL 

grammar to support the new types.  Further, the X-Types standard introduces an XML grammar that 

can be used to define data types.  A developer can choose to use either IDL or XML based type 

definition. 

 

To support RPC over DDS, the syntax for interface definition is included in the subset of IDL 4.0 that 

is supported by the CoreDX DDS IDL parser. 

 

The type system introduces support for associating additional or auxiliary information with a type.  The 

mechanism for this is the 'annotation' construct.   

 

The type system includes support for single inheritance (structures can inherit from other structures).  

 

The standard includes rules for determining compatibility between two types.  These rules are useful 

when determining compatibility between a DataWriter and DataReader. 

 

The standard defines a new mechanism for encoding data on the wire.  This data encoding is an 

enhancement of the Common Data Representation (CDR) used in prior DDS implementations.  It 

supports the concept of 'optional' data members, and modified member ordering.  These features allow 

the type designer to craft sophisticated data types that may be more compact on the network or support 

type evolution in a large system.   

 

Finally, the X-Types standard defines an API for programmatically defining data types (DynamicType) 

and creating instances (DynamicData). 

 

2 Type Definition 
Types can be defined in one of three ways: IDL, XML, and programmatically with DynamicType.  A 

type defined using one mechanism is identical to the same type defined in another mechanism.  [That 

is, the definition mechanism has no bearing on the type itself.]     

 

The CoreDX DDS code generator (coredx_ddl) accepts IDL or XML as input for type definition.  This 

section describes the supported syntax.  In comparison to previous versions of CoreDX DDS, the 

traditional IDL syntax has been augmented to support new X-Types concepts (annotations) and types 
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(bitmask and map).   Also, the support for XML type definition is new for CoreDX DDS version 4.0. 

 

2.1 Primitive Types 

The following primitive types are supported by the type definition language: 

 

IDL type XML Element C C++ C# Java 

char char8 char char char char 

wchar char32 char32 char32 int int 

octet byte unsigned char unsigned char byte byte 

boolean boolean unsigned char unsigned char bool boolean 

short int16 short  short  short short 

unsigned short uint16 unsigned short unsigned short  ushort short 

long int32 int int int int 

unsigned long uint32 unsigned int unsigned int uint int 

long long int64 int64_t int64_t long long 

unsigned long long uint64 uint64_t uint64_t ulong long 

float float32 float float float float 

double  float64 double double double double 

Table 1: Primitive Types 

 

If the primitive type is annotated as 'external' or 'optional', then the language mapping is modified to be 

a 'pointer', 'box', or nullable type as shown in the following table.   

'external | optional' 

IDL type 

'external | 

optional' 

XML Element 

C C++ C-Sharp Java 

char char8 char * char * char? Character 

wchar char32 char32 * char32 * int? Integer 

octet byte unsigned char * unsigned char * byte? Byte 

boolean boolean unsigned char * unsigned char * bool? Boolean 

short int16 short * short * short? Short 

unsigned short uint16 unsigned short * unsigned short * ushort? Short 

long int32 int * int * int? Integer 

unsigned long uint32 unsigned int * unsigned int * uint? Integer 

long long int64 int64_t * int64_t * long? Long 

unsigned long long uint64 uint64_t * uint64_t * ulong? Long 
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float float32 float * float * float? Float 

double  float64 double * double * double? Double 

Table 2: Primitive Types [optional or external] 

 

 

2.2 Collection Types 

The following sections identify the syntax and language mappings of the “collection” types.  These 

types include enumerations, bitmasks, strings, arrays, sequences and maps. 

2.2.1 Enumeration Types 

An enumeration type includes a 'name' and a list of named constants with optional assigned values.  In 

IDL this is specified like this:   

enum EnumName { CONST1, CONST2, CONST3 }; 

 

This type is expressed in XML this way: 

<enum name=”EnumName” bitBound=”32”> 

 <enumerator name=”CONST1” /> 

 <enumerator name=”CONST2” /> 

 <enumerator name=”CONST3” /> 

</enum> 

 

This type defines an enumeration named 'EnumName' with three named constants 'CONST1' (etc).  

The example definition does not assign values to the constants, so they are assigned automatically, 

using a 1-up counter starting at zero.  So, CONST1 = 0, CONST2 = 1, etc. 

enum EnumName2 { C1 = 1, C2 = 2, C3 = 3 }; 

 

In this definition, the constant values are specified explicitly.  An alternative and equivalent syntax, 

using annotations is: 

enum EnumName2 {  

 @value(1) C1,              /* using 'pre annotation'  */ 

           C2, //@value(2)  /* using 'post annotation' */ 

 @value(3) C3 

}; 

 

And the same type in XML syntax: 

<enum name="EnumName2" bitBound="32"> 

  <enumerator name="C1"value=”1”/> 

  <enumerator name="C2" value="2"/> 

  <enumerator name="C3"value=”3”/> 

</enum> 

 

Further, if some values are specified and other values are left to the 'default' algorithm, then the default 

mailto:@DDS
mailto:@DDS
mailto:@DDS
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algorithm will assign a value based on the 'largest seen so far' value plus one.  So,  

enum EnumName3 { 

 @value(10) A1, /* is '10' */ 

                A2, /* is '11' */ 

 @value(9)  A3, /* is '9'  */ 

            A4  /* is '12' */ 

}; 

 

It is an error for an enumeration to contain two or more named constants with the same value or the 

same name. 

The 'size' of an instance of an enumeration type in all language mappings is 32 bits by default.  This 

can be adjusted by applying the 'BitBound' annotation.  For example, in IDL: 

@bit_bound(8) 

enum SmallEnum { A, B, C }; 

 

And in XML: 

<enum name="SmallEnum" bitBound="8"> 

  <enumerator name="A" /> 

  <enumerator name="B" /> 

  <enumerator name="C" /> 

</enum> 

 

This will cause the enumeration type to be mapped to a smaller data type (for example, unsigned short 

in the 'C' language mapping). 

2.2.1.1 C Language Mapping 

In C, an enum is mapped as a typedef.  The enumerated constants are mapped to #define statements.  

For example: 

enum A { A1, A2, A3 }; 

 

Maps to  

typedef unsigned int A; 

#define A1      0 

#define A2      1 

#define A3      2 

 

The size of the type in the typedef is adjusted by applying a 'BitBound' annotation.  The type is 

'unsigned short' if 1<bound<=16, and uint32_t if 16<bound<=32.  Without the BitBound annotation, 

the bound is set to the default of 32 bits. 

2.2.1.2 C++ Language Mapping 

The C++ mapping is to an 'enum' type declaration.  For example: 

 enum A { A1, A2, A3 }; 

 

maps to  
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enum A { //unsigned int 

  A1 = 0,  

  A2 = 1,  

  A3 = 2 }; 

 

NOTE: unlike the C mapping, the C++ mapping is always to an 'enum' type and does not change based 

on any BitBound annotation.  Note however, the encoding for transmission on the wire will honor any 

BitBound direction, making the data encoding compatible independent of the language mapping. 

The CoreDX DDS type compiler provides a command line argument to control if the enum is scoped, that is, 

contained in a class.  By default, enums are not scoped, and the resulting C++ code is generated like: 

 
enum E { … };  

 

With the „–i e‟ argument, enums are scoped, and the resulting C++ code is generated like: 

 
enum class E {…}; 

 

The difference is apparent when trying to „use‟ the enum.  With scoped enums: 

 
E my_enum_variable = E.VAL_1 

 

Without scoped enums: 

 
E my_enum_variable = VAL_1 

 

A primary benefit of the „scoped‟ enum is that it does not pollute the containing namespace with all the 

enumerated values – they are scoped within the enum type. 

 

2.2.1.3 C# Language Mapping 

Enumerations in C# map to an 'enum'.  For example,  

 enum A { A1, A2, A3 }; 

 

maps to the following: 

public enum A : uint { 

  A1 = 0, 

  A2 = 1, 

  A3 = 2, 

} 

2.2.1.4 Java Language Mapping 

In Java, an enumeration type is by default mapped to a class.  The class includes public static final 

constants that represent the defined integral values of the enumeration; and, public static final instances 

of the class, one for each defined enumeration value.  It also includes methods to convert from an 

'integral' value to an instance of the enumeration class. 

For example,  

 enum A { A1, A2, A3 };  
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maps to: 

 
public class A { 

 

  public static final int _A1 = 0; 

  public static final A A1 = new A(_A1); 

  public static final int _A2 = 1; 

  public static final A A2 = new A(_A2); 

  public static final int _A3 = 2; 

  public static final A A3 = new A(_A3); 

  public static final A __BAD_VALUE = new A(2); 

 

 

public int value() { 

  return __pval; 

} 

 

public static A from_int(int v) { 

  switch(v) { 

    case 0:  return A1; 

    case 1:  return A2; 

    case 2:  return A3; 

  } 

  return __BAD_VALUE; 

} 

 

protected A(int v) { 

  __pval = v; 

} 

 

private int __pval; 

}; 

 

The enumeration values can be used like this: 

 
if (var == A.A1) …. 

 

It is possible to cause the enum to be mapped to a Java enum instead of a Java class by providing the  

“--javaEnum” argument to the CoreDX DDS type compiler. 

 
This argument causes IDL „enum‟ types to be mapped to Java „enum‟: 

 
public enum E {…}; 

 

instead of „class‟: 

 
public class E {…}; 

 

The „enum‟ mode allows the enum variable to be used directly in a switch() statement (unlike the „class‟ which 

has to be converted to an „int‟ type first.   

 

2.2.2 BitMask Types 

Similar to the enumeration type, the bitmask consists of a 'name' and a list of named constants.  The 

constants represent distinct flags within the BitMask.  The constants may be assigned values either 
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manually or automatically.   

There are two ways to specify a BitMask type in CoreDX DDS IDL.  The first uses an annotation to 

coerce an Enumeration type into a BitMask type.  The second approach treats bitmask as a 'first-class' 

type.  The following two examples show each approach, and result in an equivalent type definition for 

'MyBitmask'. 

An IDL example bitmask (two equivalent types demonstrating the two alternative syntax forms): 

@bitmask 

enum MyBitmask { FLAG0, FLAG1, FLAG2 }; 

 

bitmask MyBitmask { FLAG0, FLAG1, FLAG2 }; 

 

The same type in XML: 

<bitmask name="MyBitmask" bitBound="32"> 

  <flag name="FLAG0" /> 

  <flag name="FLAG1" /> 

  <flag name="FLAG2" /> 

</bitmask> 

 

The values of the BitMask named constants represent the 'bit position' of the flag.  For example, 

FLAG0 refers to bit '0'and FLAG1 refers to bit '1'.   

The size of a BitMask may be specified with the BitBound annotation; it defaults to 32.  It is an error 

for any named constant to have a value less than zero or beyond the range of the BitMask's BitBound.  

It is an error for any named constant to have a value equal to any other named constant within the 

BitMask. 

The language mapping specifies that the named constants are mapped to the value 2
n
 where n = bit 

position.  So, in the above example, FLAG0 is mapped to the value 1 (2
0
), FLAG1 is mapped to 2 (2

1
), 

and FLAG2 is mapped to 4 (2
2
). 

2.2.2.1 C Language Mapping 

In C, a bitmask is mapped as a typedef.  The boolean flag constants are mapped to #define statements. 

For example: 

bitmask A { A1, A2, A3 }; 

 

maps to the following: 

typedef unsigned int A; 

typedef unsigned int ABits; 

#define A1      1 

#define A2      2 

#define A3      4 

 

The size of the type in the typedef is adjusted by applying a 'BitBound' annotation.  The type is 

'unsigned char' if 1<bound<=8; 'unsigned short' if 8<bound<=16, and uint32_t if 16<bound<=32; and 
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uint64_t if 32<bound<=64.  The maximum value for bound is 64.  Without the BitBound annotation, 

the bound is set to the default of 32 bits.  

2.2.2.2 C++ Language Mapping 

The C++ bitmask mapping is similar to that of C, with the exception of the '#define' constants.  In C++ 

these are replace with an 'enum' with the named constants as members.  For example: 

 bitmask A { A1, A2, A3 }; 

 

maps to the following: 

typedef unsigned int A; 

enum ABits { //unsigned int 

  A1 = 1,  

  A2 = 2,  

  A3 = 4 }; 

 

2.2.2.3 C# Language Mapping 

In C#, a bitmask type maps to an integral type that includes enough bits to accommodate the 

'bit_bound' of the bitmask.  An enum is generated that includes the defined bit flags.   For example, 

 bitmask A { A1, A2, A3 }; 

 

is mapped to the following: 
 
public enum A : uint { 

  A1 = 1, 

  A2 = 2, 

  A3 = 4 

} 

 

And, a member of type bitmask'A' is mapped to: 

 
 public uint a_bitmask_member; 

 

 

2.2.2.4 Java Language Mapping 

In Java, a bitmask type maps to an integral type that includes enough bits to accommodate the 

'bit_bound' of the bitmask.  Additionally, a class is generated that includes the defined bit flags.  The 

class includes integral constants and class instances for each of the defined bit flags.  The generated 

class name is the type name with “Bits” appended.  For example, 

 bitmask A { A1, A2, A3 }; 

 

is mapped to the following: 
 
public class ABits { 

 

  public static final int _A1 = 1; 

  public static final ABits A1 = new ABits(_A1); 

  public static final int _A2 = 2; 
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  public static final ABits A2 = new ABits(_A2); 

  public static final int _A3 = 4; 

  public static final ABits A3 = new ABits(_A3); 

 

 

  protected ABits(int v) { 

    __pval = v; 

  } 

 

private int __pval; 

}; 

 
 

2.2.3 Array Types 

Arrays are defined by applying a subscript notation to a symbol.  It is common, but not required, to 

specify an alias for an array type.  Without an alias, the array type is declared 'anonymously' inside of 

another type (a structure, for example). 

Here is an example of an array alias in IDL: 

typedef long ArrayOfLong[10]; 

 

And, the same typedef in XML: 

<typedef name="ArrayOfLong" 

         type="int32" 

         arrayDimensions="10" /> 

 

And, here is an IDL example of an 'anonymous' array type: 

struct A {  

  long array_of_long[10]; 

}; 

 

The same type in XML: 

<struct name="A"> 

  <member name="array_of_long" 

          id="0" 

          type="int32" 

          arrayDimensions="10"/> 

</struct> 

 

Arrays may have multiple dimensions.  In XML: 

typedef long Matrix2D[4][4]; 

 

And in XML: 

<typedef name="Matrix2D" 

         type="int32" 

         arrayDimensions="4, 4" /> 
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2.2.3.1 C Language Mapping 

The above IDL (struct A) with a member of type long[10] maps to C like this: 

typedef struct A { 

  int  array_of_long [10]; 

} A; 

 
 

2.2.3.2 C++ Language Mapping 

In C++, the IDL maps to the following: 

struct A { 

  int  array_of_long [10]; 

}; 

 

2.2.3.3 C# Language Mapping 

And, in C#, the IDL maps to the following: 

public class A { 

  public int[]  array_of_long; 

} 

 

2.2.3.4 Java Language Mapping 

And, in Java: 

public class A { 

  public int[]  array_of_long; 

}; 

 

2.2.4 String Types 

Strings are considered collections of characters. The 'string' type is composed of 8-bit characters.  The 

'wstring' type is composed of 32-bit characters.  A string may be bounded or unbounded.  Unbounded 

strings have no upper limit placed on their data by the type system.  [The runtime environment will 

necessarily impose a limit related to available memory.]  The 'bound' does not include any required 

string 'termination' required by the language mapping.  For example, the C language binding of a string 

with bound=5 will support 5 8-bit characters plus the nul termination byte for a total capacity of 6 

bytes. 

The keyword 'string' or 'wstring' introduces a String type, followed optionally by a length bound in 

angle brackets.  The following IDL examples present bounded and unbounded string definitions: 

string     an_unbounded_string; 

string<10> a_fixed_10_string; 

 

And in XML: 

<typedef name="an_unbounded_string" 

         type="string" /> 
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<typedef name="a_fixed_10_string" 

         type="string" 

         stringMaxLength="10" /> 

 

2.2.4.1 C Language Mapping 

Unbounded string is mapped to a “char *”.    An unbounded wstring is mapped to a “cdx_char32_t *”. 

[cdx_char32_t is an alias for int32_t.]  In either case, the user is responsible for providing a valid 

pointer to a region of characters that is nul terminated.  It is expected that the user will allocate memory 

with CoreDX_DDS_malloc().  This is important if the string is part of a structure or union, because the 

clear() method of the object may attempt to reclaim the memory of its members using the 

corresponding CoreDX_DD_free() call.  Alternatively, the user can reclaim the memory manually and 

set the pointer to NULL before invoking the type's clear() method. 

A bounded string is mapped to an array of char with size equal to bound + 1.  A bounded wstring is 

mapped to an array of cdx_char32_t elements with size equal to bound + 1.  In this case, the user is 

responsible for initializing the array contents with valid character data including a nul termination 

character.   

2.2.4.2 C++ Language Mapping 

Unbounded string is mapped to a “char *”.    An unbounded wstring is mapped to a “cdx_char32_t *”. 

[cdx_char32_t is an alias for int32_t.]  In either case, the user is responsible for providing a valid 

pointer to a region of characters that is nul terminated.  It is expected that the user will allocate memory 

with new[].  This is important if the string is part of a structure or union, because the clear() or 

destructor method of the object may attempt to reclaim the memory of its members.  Alternatively, the 

user can reclaim the memory manually and set the pointer to NULL before invoking any clear or 

destroy methods.  

A bounded string is mapped to an array of char with size equal to bound + 1.  A bounded wstring is 

mapped to an array of cdx_char32_t elements with size equal to bound + 1.  In this case, the user is 

responsible for initializing the array contents with valid character data including a nul termination 

character. 

2.2.4.3 C# Language Mapping 

In C#, string types map to String.  This is true regardless of whether the string is bounded or 

unbounded. 

 

For example, the string members like this: 
 
struct Strings { 

 string     an_unbounded_string; 

 string<10> a_fixed_10_string; 

 … 

 

map to the following: 

 
public String an_unbounded_string; 

public String a_fixed_10_string; 



  13 

 

2.2.4.4 Java Language Mapping 

In Java, string types map to String.  This is true regardless of whether the string is bounded or 

unbounded. 

 

For example, the string members like this: 
 
struct Strings { 

 string     an_unbounded_string; 

 string<10> a_fixed_10_string; 

 … 

 

map to the following: 

 
public String an_unbounded_string; 

public String a_fixed_10_string; 

 

2.2.5 Sequence Types 

Sequences provide an ordered collection of zero or more elements, where each element is of the same 

type.  The sequence may have a defined upper bound on the number of elements, or may be 

'unbounded'.  Similar to arrays, sequence types may be named with a 'typedef' alias, or may be 

anonymous by declaring in-line within a containing type. 

The IDL syntax for sequences is introduced with the 'sequence' keyword.  Then, the type and an 

optional length bound is specified in angle brackets (separated with a comma, if the bound is provided).  

The bound is any 'constant' integral type, including an integral expression.  For example, two sequence 

members can be declared like this: 

sequence<string>   str_seq; 

sequence<long,10>  long_10_seq; 

 

The equivalent XML syntax for two sequence members is as follows: 

<member name=”str_seq” 

  id=”0” 

  type=”string” 

  sequenceMaxLength=”(-1)” /> 

<member name=”long_10_seq” 

  id=”1” 

  type=”long” 

  sequenceMaxLength=”10” /> 

 

2.2.5.1 C Language Mapping 

The C mapping of sequences use a macro to declare a small structure that contains members that 

implement the sequence.  There are a collection of C functions that operate on these sequence 

structures, providing operations like 'add'.  See the include file 'dds/dds_seq.h' for the complete set of 

sequence operations. 
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In the C mapping, there is no difference between a bounded and unbounded sequence.  Note, however, 

that the bound does impact the encode and decode behavior.  If a user inserts more elements into a 

bounded sequence than allowed, the extra elements will not be transferred over the network, and they 

will not be available to a receiving DataReader. 

For example: 

typedef sequence<string>     Sequence_Unbounded_OfStrings; 

typedef sequence<long, 10>   Sequence_10_OfLongs; 

 

Maps to: 

DECLARE_SEQ( char *, Sequence_Unbounded_OfString ); 

DECLARE_SEQ( int, Sequence_10_OfLong ); 

 

The mapping for an 'anonymous' sequence involves generating a name for the type.  The generated type 

name is constructed by concatenating the containing scope(s), the fully-scoped sequence element type, 

and the suffix 'Seq'.   It is possible that the generated name will clash with other auto-generated 

sequence type names.  [For this reason, it is recommended that the user consider avoiding 'anonymous' 

sequences.] 

2.2.5.2 C++ Language Mapping 

The C++ sequence mapping utilizes a template type, and a macro to instantiate the template. 

DECLARE_CPP_UNBOUNDED_SEQ( char *, Sequence_Unbounded_OfString ); 

DECLARE_CPP_UNBOUNDED_SEQ( int, Sequence_10_OfLong ); 

 

See the header file 'dds/dds_seq.hh' for full details of the C++ sequence API. 

2.2.5.3 C# Language Mapping 

The C# mapping of bounded and unbounded sequences is to a simple array type.  This IDL  

struct A {  

  sequence<string> seq_of_strings; 

  sequence<long, 10> seq10_of_longs; 

}; 

 

maps to the following members: 

public String[] seq_of_strings; 

public int[] seq_of_longs; 

 

If the sequence is bounded, and the application provides an array with more elements than the upper 

bound, then the middleware will transmit only those elements within the bound. 

2.2.5.4 Java Language Mapping 

The Java mapping of bounded and unbounded sequences is to a simple array type.  This IDL  

struct A {  

  sequence<string>   seq_of_strings; 

  sequence<long, 10> seq10_of_longs; 



  15 

}; 

 

maps to the following members: 

public String[] seq_of_strings; 

public int[]    seq_of_longs; 

 

If the sequence is bounded, and the application provides an array with more elements than the upper 

bound, then the middleware will transmit only those elements within the bound. 

 

2.2.6 Map Types 

The Map type provides an associative mapping between a key and a value.  When declaring a Map 

type, the user specifies the type of the 'key' and the type of the value, and an optional upper bound on 

the number of key:value pairs.  The user can insert key:value pair[s], and can lookup a 'key' to obtain 

the matching 'value'.  The 'key' must be unique within the map.  The types that can be used a Map key 

type are limited to signed and unsigned integer types, as well as string and wstring types. 

Like other collection types (array, sequence, etc), the map type can be named using a 'typedef', or can 

be used in-place in which case, a type name is automatically generated. 

Example IDL map definitions: 

typedef  map<long,string>    Map_Unbounded_Long_String; 

typedef  map<long,string,10> Map_10_Long_String; 

 

Equivalent XML map definitions: 

<typedef name="Map_Unbounded_Long_String" 

         mapKeyType="int32" 

         type="string" 

         mapMaxLength="(-1)" /> 

<typedef name="Map_10_Long_String" 

         mapKeyType="int32" 

         type="string" 

         mapMaxLength="10" /> 

2.2.6.1 C Language Mapping 

The following 'map' IDL statements: 

typedef<long,string>    Map_Unbounded_Long_String; 

typedef map map<long,string,10> Map_10_Long_String; 

 

Map to: 

DDS_MAP_DECLARE(int, char *, map_int_string); 

typedef map_int_string Map_Unbounded_Long_String; 

 

DDS_MAP_DECLARE(int, char *, map_10_int_string); 

typedef map_10_int_string Map_10_Long_String; 

 

The 'DDS_MAP_DECLARE' macro defines a structure that holds the map members.  These structures 
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are operated on by a collection of functions declared in the dds/dds_map.h header file.  The operations 

include clear(), get_size(), get_capacity(), set_size(), set_capacity(), copy(), insert(), find(), and 

replace().  

2.2.6.2 C++ Language Mapping 

The C++ mapping is very similar to the C mapping except that the map implementation is a template 

class.   The above IDL map statements map to C++ like this: 

DDS_CPP_MAP_DECLARE(int, char *, coredx_map_compare_int32, map_int_string); 

typedef map_int_string Map_Unbounded_Long_String; /* ns:  */ 

 
DDS_CPP_MAP_DECLARE(int, char *, coredx_map_compare_int32, map_10_int_string); 

typedef map_10_int_string Map_10_Long_String; /* ns:  */ 

 

2.2.6.3 C# Language Mapping 

The C# mapping of the map type is to a generic collection Dictionary.  For example: 

public Dictionary<int, String> map_long_string; 

public Dictionary<int, String> map_10_long_string; 

 

As shown above, bounded maps are mapped identically unbounded maps.  If the map contains more 

elements than indicated by the bound, then these elements are not transmitted by the write operation. 

 

2.2.6.4 Java Language Mapping 

The Java mapping is to the java.util.Map type.  Internally, the generated code instantiates a 

java.util.HashMap to hold the map data. 

For example: 

public Map<Integer, String> map_long_string; 

public Map<Integer, String> map_10_long_string; 

 

As shown above, bounded maps are mapped identically unbounded maps.  If the map contains more 

elements than indicated by the bound, then these elements are not transmitted by the write operation. 

 

2.3 Aggregate Types 

2.3.1 Structure Types 

Structure types are an aggregate type that contains one or more member elements.  The members can 

be of any type, including 'struct'.  Structure members have a specific order, as listed in the IDL.   

Structures can 'inherit' from another structure type.  In this case, the child structure is said to 'extend' 

the parent structure.  The parent structure must have been defined prior to the child.   
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2.3.1.1 C Language Mapping 

The IDL struct type is mapped to a C struct.  Members are listed in the order in which they are 

presented in the IDL struct.  In addition to the struct definition, the code generator emits several 

methods to operate on instances of the structure, for example 'alloc', 'init', and 'clear' operations.  

For example, the following IDL 

struct A {  

  long long_1; 

  long long_2; 

}; 

 

maps to: 

 
typedef struct A {  

  int  long_1; 

  int  long_2; 

} A; 

 

struct A *     A_alloc ( void ); 

void           A_free ( struct A * inst ); 

void           A_init ( struct A * instance ); 

void           A_clear( struct A * instance ); 

void           A_copy ( struct A * copy_to, const struct A * copy_from ); 

 

2.3.1.2 C++ Language Mapping 

The C++ mapping is similar to the C, but uses methods.  For the IDL “struct A” presented above, the 

C++ mapping is: 

struct COREDX_TS_STRUCT_EXPORT A { 

  public: 

    /** Constructor, Copy Constructor, Destructor, Assignment operator */ 

    A(); 

    A( const A & other ); 

    ~A(); 

    A& operator=( const A & other); 

 

    void init(); 

    void clear(); 

    void copy( const A * instance ); 

 

    int  get_marshal_size(int offset, int just_keys) const ; 

    int  marshal_cdr(unsigned char * buf, int offset, int stream_len, unsigned char 

swap, int just_keys) const ; 

    int  marshal_key_hash(unsigned char *buf, int offset, int stream_len) const; 

    int  unmarshal_cdr(unsigned char * buf, int offset, int stream_len, unsigned 

char swap, int just_keys); 

    int  unmarshal_key_hash(unsigned char *buf, int offset, int stream_len); 
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    /* Member vars*/ 

    int  long_1; 

    int  long_2; 

 

    private: 

 

}; //A 

 

2.3.1.3 C# Language Mapping 

A structure is mapped to a public class in C#.  For example, the above IDL maps to the following C#: 

public class A { 

  // instance variables 

  public int long_1; 

  public int long_2; 

 

  // … 

} 

 

2.3.1.4 Java Language Mapping 

A structure is mapped to a public class in Java.  For example, the above IDL maps to the following 

Java: 

public class A { 

 

  // instance variables 

  public int long_1; 

  public int long_2; 

 

  // …. 

}; 

 

 

2.3.2 Union Types 

Union types are another aggregate type.  They consist of a discriminator and a list of potential 

members.  The value of the discriminator determines which one of the potential members are actually 

present in the union instance.  The name of the discriminator is 'discriminator', and that name is 

reserved for union types (no other member may be named discriminator).   

Each member is associated with one or more values of the discriminator. These values are identified in 

one of two ways: (1) They may be identified explicitly; it is not allowed for multiple members to 

explicitly identify the same discriminator value; and, (2) at most one member of the union may be 

identified as the “default” member; any discriminator value that does not explicitly identify another 

member is considered to identify the default member.  These two mechanisms together guarantee that 

any given discriminator value identifies at most one member of the union. (Note that it is not required 

for every potential discriminator value to be associated with a member.)   

The mapping from discriminator value to member is defined by the union type and does not differ from 
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instance to instance.  

The value of the member associated with the current value of the discriminator is the only member 

value considered to exist in a given object of a union type at a given moment in time.  However, the 

value of the discriminator field may change over the lifetime of a given object, thereby changing which 

union member‟s value is observed.  It is not defined whether, upon switching from a discriminator 

value x to a different value y and then immediately back to x, the previous value of the x member will 

be preserved. 

Example IDL union definition: 

union U1 switch(octet) { 

  case 0: long zero_long; 

  case 2: octet two_byte; 

  default: string default_string; 

}; 

 

And in XML: 

 
<union name="U1"> 

  <discriminator 

    type="byte"/> 

  <case> 

    <caseDiscriminator value="0" /> 

    <member name="zero_long" 

            id="1" 

            type="int32"/> 

  </case> 

  <case> 

    <caseDiscriminator value="2" /> 

    <member name="two_byte" 

            id="2" 

            type="byte"/> 

  </case> 

  <case> 

    <caseDiscriminator value="default" /> 

    <member name="default_string" 

            id="3" 

            type="string"/> 

  </case> 

</union> 

 

2.3.2.1 C Language Mapping 

This IDL union definition 

union U switch(boolean) { 

  case TRUE: long true_long; 

  case FALSE: octet false_byte; 

}; 

 

maps to the following: 

 
typedef struct U {  

  unsigned char  discriminator; 
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  unsigned char  _initialized; 

  union { 

    int  true_long; 

    unsigned char  false_byte; 

  } _u; 

} U; 

 

struct U      *U_alloc ( void ); 

void           U_free ( struct U * inst ); 

void           U_init ( struct U * instance ); 

void           U_clear( struct U * instance ); 

void           U_copy ( struct U * copy_to, const struct U * copy_from ); 

2.3.2.2 C++ Language Mapping 

The above union IDL ('U') maps to the following C++ code: 

class U {  //   

  public:  

    unsigned char _discriminator;  

    unsigned char  _initialized;  

    union {  

      int  _pd_true_long;  

      unsigned char  _pd_false_byte;  

    } _u;  

  public:  

    // Constructor, Copy Constructor, Destructor, Assignment operator  

    U();  

    U( const U & other );  

    ~U();  

    U& operator=( const U & other);  

    void           discriminator(unsigned char d) { _discriminator = d; 

                                                    _initialized = 1; }  

    unsigned char  discriminator() const { return _discriminator; }  

 

    void init();  

    void clear();  

    void copy( const U * instance );  

 

    int  get_marshal_size(int offset, int just_keys) const ;  

    int  marshal_cdr(unsigned char * buf, int offset, int stream_len,  

                     unsigned char swap, int just_keys) const ;  

    int  marshal_key_hash(unsigned char *buf, int offset, int stream_len) const;  

    int  unmarshal_cdr(unsigned char * buf, int offset, int stream_len,  

                       unsigned char swap, int just_keys);  

    int  unmarshal_key_hash(unsigned char *buf, int offset, int stream_len);  

 

    /* Member vars*/  

    int true_long() const { return _u._pd_true_long; }  

    void true_long(  int _v) {  

      clear();  

      _u._pd_true_long = _v;  

      this->discriminator(DDS_TRUE);  

    }  

    unsigned char false_byte() const { return _u._pd_false_byte; }  

    void false_byte(  unsigned char _v) {  

      clear();  

      _u._pd_false_byte = _v;  

      this->discriminator(DDS_FALSE);  

    }  
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};  

 

NOTE: 

 If the union type includes any 'constructed' members, they are not included in the internal union 

'_u'; rather, they are promoted to be top-level members of the generated C++ class. That is, only 

'primitive' data types can be put into the internal union '_u'. 

 We generate an accessor and modifier (or, multiple modifiers depending on the member type) 

for each 'case' in the union type. 

 There are accessor and modifier members for the discriminator field. 

2.3.2.3 C# Language Mapping 

 

The above union IDL ('U') maps to the following C# code: 

 

public class U :  DdsType  {  

  public U() {  

    __init = false;  

  }  

 

  public U init() {  

    __init = true;  

    __disc = (bool)false;  

    return this;  

  }  

 

  public void clear() {  

    __init = false;  

    // Skipping non-dynamic symbol: true_long  

    // Skipping non-dynamic symbol: false_byte  

  }  

 

  public void copy( Object f ) {  

    U from = (U)f;  

    __init = from.__init;  

    __disc = from.__disc;  

    if ((discriminator()==true)) {  

      this.true_long = from.true_long;  

    }  

    if ((discriminator()==false)) {  

      this.false_byte = from.false_byte;  

    }  

  }  

 

  public bool discriminator() {  

    return __disc; 

  }  

 

  // true_long property  

  public  int true_long {  

    get {  

      if (__init==false) throw new System.ArgumentException();  



  22 

      if ((__disc==true))  

        return __true_long;  

      throw new System.ArgumentException();  

    }  

    set {  

      __init = true;  

      __disc = (bool) true;  

      __true_long = value;  

    }  

  }  

  // false_byte property  

  public  byte false_byte {  

    get {  

      if (__init==false) throw new System.ArgumentException();  

      if ((__disc==false))  

        return __false_byte;  

      throw new System.ArgumentException();  

    }  

    set {  

      __init = true;  

      __disc = (bool) false;  

      __false_byte = value;  

    }  

  }  

  public  bool   __disc;  

  public  bool __init;  

  private  int  __true_long;  

  private  byte  __false_byte;  

}; // U  

 

2.3.2.4 Java Language Mapping 

The above union IDL ('U') maps to the following Java code: 

 
final public class U {  

 

  public U() {  

    __init = false;  

  }  

 

  public U init() {  

    __init = true;  

    __disc = false;  

    return this;  

  }  

 

  public void clear() {  

    __init = false;  

  }  

 

  public void copy( U from ) {  

    __init = from.__init;  

    __disc = from.__disc;  

    this.true_long = from.true_long;  

    this.false_byte = from.false_byte;  

  }  

 

  public boolean discriminator() {  
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    return __disc;  

  }    

 

  // true_long accessor  

  public  int true_long() throws Exception {  

    if (__init==false) throw new Exception();  

    if ((__disc==true))  

      return true_long;  

    // TODO: throw BAD_OPERATION exception ?  

    throw new Exception();  

  }  

  // true_long modifier  

  public void true_long( int __val) {  

    __init = true;  

    __disc = true;  

    true_long = __val;  

  }  

  // false_byte accessor  

  public  byte false_byte() throws Exception {  

    if (__init==false) throw new Exception();  

    if ((__disc==false))  

      return false_byte;  

    // TODO: throw BAD_OPERATION exception ?  

    throw new Exception();  

  }  

  // false_byte modifier  

  public void false_byte( byte __val) {  

    __init = true;  

    __disc = false;  

    false_byte = __val;  

  }  

  public  boolean __disc;  

  public  boolean __init;  

  public  int true_long;  

  public  byte false_byte;  

}; // U  

 

2.4 Type Aliases 

The IDL 'typedef' provides an alternate name for an already-existing type. The alternate name can be 

helpful for suggesting particular uses and semantics to human readers, making it easier to repeat 

complex type names for human writers, and simplifying certain language bindings.  An alias/typedef 

does not introduce a distinct type; it provides an alternative name by which to refer to a type. 

IDL alias: 

typedef long MyLong; 

 

XML alias: 

<typedef name="MyLong" 

         type="int32" /> 

2.4.1.1 C Language Mapping 

IDL 'typedef' maps to typedef in C. 
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typedef int MyLong; 

2.4.1.2 C++ Language Mapping 

IDL 'typedef' maps to typedef in C++. 

typedef int MyLong; 

2.4.1.3 C# Language Mapping 

The C# language mapping of an alias simply replaces the alias with the fundamental type indicated by 

the alias.  Any number of nested aliases will be reduced to the fundamental type.  The typedef does not 

generate any C# code. 

2.4.1.4 Java Language Mapping 

The Java language mapping of an alias simply replaces the alias with the fundamental type indicated by 

the alias.  Any number of nested aliases will be reduced to the fundamental type.  The typedef does not 

generate any Java code. 

2.5 Constants 

IDL constant: 

const long A_LONG_CONST = 100; 

 

XML constant: 

<const name="A_LONG_CONST" 

       type="int32" 

       value="100" /> 

2.5.1.1 C Language Mapping 

#define A_LONG_CONST (100) 

2.5.1.2 C++ Language Mapping 

static const int A_LONG_CONST = (100); 

2.5.1.3 C# Language Mapping 

namespace A 

{ 

  public class A_LONG_VALUE { 

     public const int value = (int)(100); 

  } 

} 

2.5.1.4 Java Language Mapping 

package A; 

 

public interface A_LONG_VALUE { 

  public static final int value = (int)(100); 

} 
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2.6 Annotations 

IDL Annotations are a means of augmenting the type information in the IDL input.  Annotations are 

applied to a type by specifying the annotation name (with an ampersand '@' symbol prefix) including 

scope, if relevant or desired, and listing values for any annotation parameters.  The annotation syntax 

and the pre-defined annotation instances are discussed in detail in the Type AugmentationError! 

Reference source not found. section.   

The 'builtin' annotations are used to control the mapping of types into a language specific 

representation or to tailor the behavior of the generated type support code. 

Additional, user defined annotation types can be added by specifying a new annotation name and 

members with the IDL annotation declaration syntax.   

annotation @MyAnnotation {  

  bool isGood;  

}; 

 

Once an annotation type has been defined, it can be applied in the same manner as any other built-in 

annotation.  However, because the IDL parser does not have any a-prior knowledge about the user-

defined annotation, it does not impact code generation. 

 

2.7 Interfaces 

The RPC over DDS implementation makes use of 'interfaces' to define the data types and operations 

used by the RPC API.  In IDL the interface construct looks like this: 

@nested 

exception TooBig {}; 

 

@service 

interface Foo { 

  long    op1( long param );    // operation taking one param, returning a long 

  long    op2 ( );              // taking no parameters, returning a long 

  void    op3 ( long val ) raises TooBig; // returns void, may raise exception 

}; 

 

The above example declares an interface named Foo with three operations.  The '@service' annotation 

indicates that this interface defines an RPC over DDS interface.  The exception 'TooBig' is used by one 

of the operations.  For more information on RPC over DDS, see the CoreDX RPC Programmers 

Guide. 

2.8 Type Augmentation 

A type definition can be augmented by attaching additional information.  For example, the DDS idea of 

'key' members in a structure or union.  In IDL, this augmentation is accomplished via an 'annotation' 

construct.  In XML, the augmentation is accomplished by additional properties on an element (with the 

exception of 'Verbatim', which is a separate element).  In general, we refer to this type augmentation as 

an 'annotation', regardless of the actual mechanism used to attach the extra information.  Several types 
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of annotations are defined in the standard.  These annotations include: 

  

  bit_bound 

  bitmask 

  extensibility 

  external [aka: shared] 

  id 

  key 

  must_understand 

  nested 

  optional 

  topic 

  verbatim 

 

Some annotations can be applied to type definitions (for example, extensibility or nested), while others 

apply only to members of a type (for example, key or id).  The allowed usage of each annotation is 

described below. 

2.8.1 Annotation Syntax 

In IDL, annotations are indicated with an '@' prefix.  Some annotations take no values, their meaning is 

conveyed simply by their presence (for example @key); while others take one or more values to 

completely define their meaning.  Values can be provided to an annotation by providing a list of 

parameters of the form 'name=value'.  For example:  

 
@my_annotation(id=5, color=”green”) 

 

If an annotation has one parameter, and that parameter is named 'value', then a shorthand syntax is 

allowed: 

 
@an_annotation(5) is equivalent to @an_annotation(value=5) 

 

If an annotation application omits values for some (or all) of the annotation's parameters, then those 

parameters are initialized with their default value.  [The default value can be specified in the definition 

of the annotation.]If there is no default value specified for a parameter, then the default is taken as zero 

or an empty string. 

 

In most cases an annotation can be applied in 'prefix' style or 'postfix' style.   Further, prefix and postfix 

applications can be mixed.  For example: 

 

Prefix: 

 
 @key  long my_key; 

 

Postfix: 

 
 long my_key;  //@key 

 

 

mailto:@key
mailto:@key
mailto:@key
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2.8.2 Built-in Annotations 

The following sections describe the meaning and use of each of the annotations. 

2.8.3 Bit Bound 

The @bit_bound annotation is used to specify a number of bits.  It is applicable to enum types and 

bitmask types.  For enumerations, it can take a value between 1 and 32 inclusive, and the default is 32.  

For bitmask types, its range is extended to 1 .. 64 inclusive, with a default of 32. 

For example: 

@bit_bound(8) enum SmallEnum { VAL1, VAL2 }; 

 

This has the effect of declaring an enumeration type 'SmallEnum' that is represented as an 8bit value.  

Note, the bit_bound is rounded up to the nearest natural machine data size (that is: 8bits, 16bits, 32bits, 

or 64bits). 

2.8.4 BitMask 

This annotation is used to 'convert' and enumeration type into a Bit Set.  This annotation is useful in 

those cases where the IDL must be acceptable by a parser that does not understand the 'bitmask' 

keyword.  However, if the compiler doesn't process the @bitmask annotation, then the type will be 

considered a basic enumeration, and the named constant values will not be computed the same as a 

compiler that understands @bitmask.  This could lead to errors, perhaps undetectable until run-time.  

For this reason, the use of the @bitmask annotation is discouraged.  Instead, it is better to use the first-

class 'bitmask' type, and be alerted to the incompatibility at code generation time. 

2.8.5 Extensibility 

Extensibility refers to the ability to change or extend a data type.  This has significant implications to 

the algorithm that determines if two data types 'match' or are 'compatible'.  In previous versions of 

CoreDX DDS, two types were considered to be compatible if the structure of the types matched exactly 

including things such as keys, string lengths, and array sizes.  The X-Types standard introduces more 

complex rules for type compatibility that include the ability to add members to a data type or re-order 

members.  In this case, two types can be compatible without exactly matching structurally.  There are 

three types of 'extensibility' defined in the standard:  Final, Appendable, and Mutable.   

The 'Final' extensibility essentially matches the behavior of 'pre X-Types' DDS systems.  Data types 

that are marked as 'Final' are not compatible with other types unless they match structurally. 

A type marked „Appendable‟ is compatible with another type if the other type is a strict super set of the 

original type, and the members in common are also declared in the same order and position.  [Older 

versions of the X-Types specification referred to „Extensible‟, which has been replaced with 

„Appendable‟.  CoreDX DDS recognizes both keywords, and treats both as „Appendable‟.]  

A type marked 'Mutable' is the most flexible.  The members of two types need not overlap completely, 

and structure members may be declared in different orders and positions.  As long as there exists a set 

of members in common between the two types, and each member in that set has the same 'ID', and 
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name in both types [and the 'key' fields match exactly], then the two types are considered compatible. 

The CoreDX DDS type compiler recognizes different variations of the @extensibility syntax, including 

the following. 

IDL:  

@final, @extensible, @appendable, @mutable 

@extensibility(FINAL), @extensibility(EXTENSIBLE), @extensibility(APPENDABLE), 

@extensibility(MUTABLE) 

@extensibility(final), @extensibility(extensible), @extensibility(appenable), 

@extensibility(mutable) 

XML: 

<struct name="A" 

        extensibility="final"> 

  <member name="a_long" 

          type="int32"/> 

  <member name="b_long" 

          type="int32"/> 

</struct> 

 

<struct name="B" 

        extensibility="extensible"> 

  <member name="a_long" 

          type="int32"/> 

  <member name="b_long" 

          type="int32"/> 

</struct> 

 

<struct name="C" 

        extensibility="appendable"> 

  <member name="a_long" 

          type="int32"/> 

  <member name="b_long" 

          type="int32"/> 

</struct> 

 

<struct name="D" 

        extensibility="mutable"> 

  <member name="a_long" 

          type="int32"/> 

  <member name="b_long" 

          type="int32"/> 

</struct> 

 

Extensibility can have a significant impact to the usage of the data type.  For example, the encode and 

decode of structures with „Final‟ extensibility results in the most compact representation on the wire.   

These rules are slightly complicated by the 'must_understand' attribute (described below).  If a member 

in type T1 is marked as 'must_understand', but is not present in a type T2, then the type T1 is not 

assignable to T2 (which means that the types are incompatible).   
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2.9 The rules for type compatibility are discussed further in 
Section Error! Reference source not found. Escaping Identifiers 

It is possible to create IDL data types that use IDL keywords as data type identifiers.  While this 

approach is not recommended, it is possible to lexically “escape” identifiers by prepending an 

underscore (_) to an identifier. 

The CoreDX DDS type compiler must be given the –keywordEscape option in order to enable this 

behavior.  

For example, IDL like this: 

enum Direction { _IN, _OUT }; 

When compiled without the –keywordEscape coredx_ddl option will generate code (pseudo code) like 

this: 

 
public enum { _IN, _OUT }; 

 

When compiled with the –keywordEscape option will generate code (pseudo code) like this: 

public enum { IN, OUT }; 

 

Type Discovery and Type MatchingError! Reference source not found.. 

2.9.1 ID 

Every member in a structure or union type is assigned a 'member id' (or ID).  This ID is used (in the 

case of Extensible or Mutable extensibility) to determine type matching, and is potentially included in 

the encoded data to facilitate decoding.  The @id annotation allows the user to control how ID's are 

assigned to type members.  Without the annotation, member id is assigned as a one-up counter, starting 

at zero, proceeding from the largest value seen so far in processing the type. 

For example (IDL): 

struct A { 

  long a1;  // will be assigned member_id = 0 

  long a2;  // will be assigned member_id = 1 

}; 

 

struct B { 

  @id(10) long b1;  // will be assigned member_id = 10 

          long b2;  // will be assigned member_id = 11 

}; 

 

struct C { 

  @id(10) long c1;  // will be assigned member_id = 10 

  @id(1)  long c2;  // will be assigned member_id = 1 

          long c2;  // will be assigned member_id = 11 

}; 

 

And XML: 
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<struct name="B"> 

  <member name="b1" 

          id="10" 

          type="int32"/> 

</struct> 

 

 

NOTE: It is expected that a future update to the X-Types standard will define a new algorithm for 

automatic ID value generation (rather than the current 1-up counter mechanism).  The ID will likely be 

based on a hash of the member name.  This will enable ID values to remain the same, even if members 

are rearranged in the data type.  This may have an impact if you develop types and rely on the 'auto-

assignment' feature.  A future version of the compiler will include an option to select between the 

current one-up counter and any other algorithm (for example, hash based). 

2.9.2 Key 

The @key annotation is used to mark those members that make up the key of the data type. A unique 

'key' value indicates a unique instance in the data model. In general, any member of a structure can be 

marked as a key, and a union discriminator can be marked as key.  A 'key' member cannot also be 

marked 'optional' (see Optional, below). 

A member can be indicated as being part of the 'key' by applying the @key attribute.    

In IDL: 

struct A {  

  @key long a_long; 

       long b_long; 

}; 

 

In XML: 

<struct name="A" 

  <member name="a_long" 

          key="true" 

          type="int32"/> 

  <member name="b_long" 

          type="int32"/> 

</struct> 

 

CoreDX DDS versions 4.8.7 and earlier treat nested keys differently than CoreDX DDS versions 5.0 

and later.  CoreDX DDS versions 5.0 and later are compliant with the current X-Types standard.   

The following table includes examples of nested key definitions and how they are different between 

CoreDX DDS versions: 

IDL CoreDX DDS v4 (and earlier) key CoreDX DDS v5.0 (and later) key 
struct A { 

  @key long a_long_key; 

       char a_char; 

}; 

a_long_key a_long_key 

struct B { a.a_long_key NO KEY 
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       A    a; 

       char b_char; 

}; 
struct C { 

  @key long c_key; 

       A    a; 

}; 

c_key + a.a_long_key c_key 

struct D { 

  @key A    a; 

}; 

a_long_key + a_char a.a_long_key 

struct E { 

  @key B    b; 

} 

b.a.a_long_key + b.a.a_char + 
b.b_char 

b.a.a_long_key + b.b_char 

struct F { 

       long  f_long; 

}; 

struct G { 

  @key F     f; 

}; 

f.f_long f.f_long 

struct H { 

       A   a_array[10]; 

}; 

[a.a_long_key] X 10 NO KEY 

struct I { 

  @key A   a_array[10]; 

}; 

[a.a_long_key + a.a_char] X 10 [a_long_key] X 10 

 

 

 

2.9.3 Must Understand 

The @must_understand annotation can be applied to member(s) of a structure or union type.  This 

indicates that the receiver of this data type must be able to understand (parse) the data for this member. 

If this flag is false, the receiver is free to ignore this member if it is not known as part of the receiver's 

data type.   

If the receiver type does not contain a matching definition for the 'must understand' member, then the 

receiver may fail to parse data that includes the member.  For this reason, two types are considered 

incompatible if the receiver type omits one or more 'must understand' members. 

This flag can be set explicitly by use of the @must_understand annotation.  In IDL: 

@extensibility(MUTABLE_EXTENSIBILITY) 

struct A {  

  @must_understand long a_long; 

                   long b_long; 

}; 

 

And in XML: 

<struct name="A" 

        extensibility="mutable"> 

  <member name="a_long" 

          mustUnderstand="true" 

          type="int32"/> 
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  <member name="b_long" 

          type="int32"/> 

</struct> 

 

The value of a member‟s “optional” property is unrelated to the value of its “must understand” 

property.  For example, it is legal to define a type in which a non-optional member can be safely 

skipped or one in which an optional member, if present and not understood, must lead to the entire 

sample being discarded. 

 

2.9.4 Nested 

The @nested annotation can be applied to an aggregate data type (structure or union) and it indicates 

that the type is not to be considered a „top-level‟ type, and therefore does not require full code 

generation.  For example, a nested type 'Foo' will not generate FooDataReader, FooDataWriter, and 

FooTypeSupport code.  This can be helpful to reduce the volume of generated code. 

In IDL: 

@nested 

struct InnerStruct {  

  long avalue; 

}; 

 

And in XML: 

 
<struct name="InnerStruct" 

        nested="true"> 

  <member name="avalue" 

          type="int32"/> 

</struct> 

 

2.9.5 Optional 

The @optional annotation can be applied to a member of an aggregate type (structure or union).  This 

indicates that the member may in some cases be absent.  An absent member is indicated by a 'null' 

value for the member.  [This implies that the member is mapped to a 'pointer' or 'reference' type in the 

language mapping.]   

A 'key' member cannot be 'optional'. 

 

2.9.6 External [aka: Shared] 

The @external annotation is applicable to a member of an aggregate type (structure or union).  It can 

also be applied to array and sequence elements.  This annotation indicates that the member is to be 

mapped to a 'pointer' or 'reference' type in the language binding.  It has no other impact on the data 

type.  In the CoreDX DDS implementation, an external member is initialized to NULL by a data types 

constructor.  If the member is non-NULL when the destructor is called, the destructor will attempt to 
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recursively destroy the member.  The application is responsible for setting the member pointer, and 

removing it, as appropriate. 

Care must be taken when using 'external' members.  The generated 'destructor' code will delete memory 

referenced by any external members.  If the sample is not the owner of that memory, then the user must 

take care to clear the reference (set to NULL) before calling the destructor code.  

 

2.9.7 Topic 

A structure can be marked with a @topic annotation.  The behavior of this annotation is unspecified in 

the DDS and X-Types standards.  CoreDX DDS understands this annotation, but does not use it. 

 

2.9.8 Verbatim 

The @verbatim annotation allows a type designer to insert text into the generated code.  This 

annotation can be applied to any type definition.  This annotation has several properties that can be 

utilized to control when and where the text is inserted. 

language: this parameter is a string that specifies which output language this verbatim text should be 

output for.  The default value of this parameter is “*” which will match any output language.  The other 

values that have meaning for CoreDX DDS are “c”, “c++”, “java”, “csharp”, “*”, and “comment”.   

In addition, language may be set to “comment”, in which case the „text‟ is emitted as a comment in the 

target programming language immediately before the member that the annotation applies to.  For 

example: 

@verbatim(language=”comment” text=”…”) 

placement: The placement parameter defines where the verbatim text should be inserted in the output 

code.  The default value is “before-declaration”.  The possible values are: 

Verbatim Placement Meaning 

begin-declaration-file The text is inserted at the beginning of the file containing the 

declaration of the associated type before any type declarations. 

before-declaration The text is inserted immediately before the declaration of the 

associated type. 

begin-declaration The text is inserted into the body of the declaration of the associated 

type before any members or constants. 

end-declaration The text is inserted into the body of the declaration of the associated 

type after all members or constants.  
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after-declaration The text is inserted immediately after the declaration of the associated 

type. 

end-declaration-file The text is inserted at the end of the file containing the declaration of 

the associated type after all type declarations. 

Table 3: Verbatim Placement values 

 
 

text: this string parameter is copied directly into the generated code subject to the 'language' and 

'placement' parameters.  The „text‟ parameter can have multiple lines like this: 

    @verbatim (language="comment", text= 

                " This is a very long text block that spans multiple\n" 

                " lines.  The text will be emitted as a comment \n" 

                " in the target language.") 

2.10 Escaping Identifiers 

It is possible to create IDL data types that use IDL keywords as data type identifiers.  While this 

approach is not recommended, it is possible to lexically “escape” identifiers by prepending an 

underscore (_) to an identifier. 

The CoreDX DDS type compiler must be given the –keywordEscape option in order to enable this 

behavior.  

For example, IDL like this: 

enum Direction { _IN, _OUT }; 

When compiled without the –keywordEscape coredx_ddl option will generate code (pseudo code) like 

this: 

 
public enum { _IN, _OUT }; 

 

When compiled with the –keywordEscape option will generate code (pseudo code) like this: 

public enum { IN, OUT }; 

 

3 Type Discovery and Type Matching 
CoreDX DDS exchanges type information during the entity discovery process.  That is, when 

announcing the existence of the Reader or Writer entity, the data type information is included with the 

entity's QoS policies.  This allows the peers to perform a 'type compatibility' test before matching two 

entities.  [Note, this behavior was supported by CoreDX DDS prior to X-Types; but it used a non-

standard extension to the discovery information.] 
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The rules for determining type compatibility are non-trivial.  With the addition of 'Extensible' and 

'Mutable' data types, simple structural equivalence is no longer sufficient to determine type 

compatibility. 

The rules for type compatibility are based on the 'is-assignable-from' predicate.  This is necessary to 

capture the behavior of a 'sample' produced by a Writer that must be consumed by a Reader.  The type 

of the written sample must be assignable to an instance of the type known by the Reader.  [It may not 

be true that the reverse assignability is possible.] 

The rules for the 'is-assignable-from' predicate are described in detail in the following sections.  We 

consider T1 is-assignable-from T2. 

3.1 Primitive Types 

Any primitive type is assignable to that exact primitive type.  No type 'coercion' is allowed as the wire 

representation is likely different; for example, a long (4 bytes) vs a short (2 bytes).  Allowing type 

compatibility between long and short would force the reader to recognize the different size of the type 

in its encoded form – adding undesired overhead to the encoding and processing. 

3.2 Collection Types 

Collection types include string, array, sequence, and map.  The collection is assignable if the 

collection elements are assignable and if the collection bound is compatible.  For strings, the elements 

are either char8 or char32.  For strings, maps, and sequences the bound is compatible if T1.bound >= 

T2.bound.  [That is, if the published collection count will always be smaller or equal to the subscribed 

count.]  For arrays, the bound is compatible only if T1.size == T2.size.  For a map, the 'key type' is 

tested for is-assignable-from in addition to testing the 'value type'. 

3.3 BitMask Types 

BitMask T1 is-assignable-from BitMask T2 if T1.bound == T2.bound.  Further, a BitMask can be 

assigned from an 'integral' type if the integer type has a size that matches the underlying type of the 

BitMask.  That is: 

 

0 < T1.bound <=  8 is-assignable-from UINT8 

8 < T1.bound <= 16 is-assignable-from UINT16 

16 < T1.bound <= 32 is-assignable-from UINT32 

32 < T1.bound <= 64 is-assignable-from UINT64 

  Table 4: BitMask bitbound sizes 

3.4 Enumeration Types 

Enumeration T1 is-assignable-from Enumeration T2 if and only if: 

1) Any constants that have the same name in T1 and T2 also have the same value, and any 
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constants that have the same value in T1 and T2 also have the same name; and 

2) T1.extensibility == T2.extensibility; and 

3) if (T1.extensibility == Extensible) then, the following is true: 

a) for each constant index „i‟ in T1 the constant in T1 at that index c1[i] and the constant 

in T2 at that index c2[i], if c2[i] exists, have the same name. 

4) if (T1.extensibility == Final) then, the following are also true: 

a) The number of constants in T1 is equal to the number of constants in T2; and 

b) For each constant index „i‟ in T1 the constant in T1 at that index c1[i] and the 

constant in T2 at that index c2[i] have the same name. 

3.5 Aggregation Types 

For aggregation types, is-assignable-from is based on the extensibility of the type and the is-assignable-

from predicate of the types‟ members. The correspondence between members in the two types is 

established based on their respective member IDs and on their respective member names. 

3.5.1 Structure Types 

For the purposes of determining 'is-assignable-from' for structure types, members belonging to base 

types of T1 or T2 shall be considered “expanded” inside T1 or T2 respectively, as if they had been 

directly defined as part of the sub-type.   

Structure type T1 is-assignable from Structure type T2 if and only if the following holds true: 

1) T1.extensibility == T2.extensibility; and 

2) T1.keys.count == T2.keys.count (that is, they have the same number of key members); and 

3) For each member “m1” that forms part of the key of T1 (directly or indirectly), there is a 

corresponding member “m2” that forms part of the key of T2 (directly or indirectly) with the 

same member id (m1.id == m2.id) where m1.type is-assignable-from m2.type; and 

4) Any members in T1 and T2 that have the same name also have the same ID and any 

members with the same ID also have the same name; and 

5) For each member “m1” in T1, if there is a member m2 in T2 with the same member ID then 

m1.type is-assignable-from m2.type; and 

6) For each member “m2” in T2 for which both optional is false and must_understand is true 

there is a corresponding member “m1” in T1 with the same member ID; and 

7) There is at least one member “m1” of T1 and one corresponding member “m2” of T2 such 

that m1.id == m2.id (that is, the two type must share at least one member); and 

8) if (T1.extensibility == Extensible) then, the following is true: 
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a) for each member index „i‟ in T1 the member in T1 at that index m1[i] and the member 

in T2 at that index m2[i], if m2[i] exists, have the same member ID and the same value 

of the „optional‟ attribute and m1[i].type is strongly assignable from m2[i].type. 

9) if (T1.extensibility == Final) then, the following is true: 

a) The number of members in T1 is equal to the number of members in T2; and 

b) For each member index „i‟ in T1 the member in T1 at that index m1[i] and the 

member in T2 at that index m2[i] have the same member ID and the same value of the 

„optional‟ attribute and m1[i].type is strongly assignable from m2[i].type. 

 

NOTE: prior to the implementation of X-Types, DDS data types essentially behaved as FINAL 

extensibility.  In order to achieve compatibility with non-X-Types deployed components (that is 

components deployed with a DDS implementation that does not support X-Types), it is necessary to 

mark types as FINAL. 

3.5.2 Union Types 

In general, Union type T1 is-assignable-from Union type T2 if and only if it is possible to identify the 

appropriate T1 member based on the T2 discriminator value and the is-assignable-from predicate holds 

for both the discriminator and the selected member.  More specifically, T1 is-assignable-from T2, if 

and only if: 

1) T1.extensibility == T2.extensibility; and 

2) T1.discriminator.id == T2.discriminator.id and T1.discriminator.type is-assignable-from 

T2.discriminator.type; and 

3) Either the discriminators of both T1 and T2 are keys or neither are keys; and 

4) Any members in T1 and T2 that have the same name also have the same ID and any 

members with the same ID also have the same name; and 

5)  For each member “m1” in T1, if there is a member m2 in T2 with the same member ID then 

m1.type is-assignable-from m2.type if T1 is mutable or strongly assignable if T1 is final or 

extensible; and 

6) A discriminator value appearing in a non-default label of T2 selects a member m2. If the 

same discriminator value selects a member m1 of T1, then m1.id == m2.id; and  

7) A discriminator value appearing in a non-default label of T1 selects a member m1. If the 

same discriminator value selects a member m2 of T2, then m1.id == m2.id; and 

8) If both T1 and T2 have a default label, then the IDs of the members selected by those labels 

are equal; and 

9)  if (T1.extensibility == Final) then, the number of members in T1 is equal to the number of 



  38 

members in T2. 

4 Dynamic Types and Dynamic Data 
The CoreDX DDS type system includes the option to define data types in code 'on-the-fly'.  This can be 

used to develop dynamic general-purpose analysis tools that can discover types at run-time and interact 

with entities using those types.  Further, it can be helpful when the volume of code generated by IDL is 

undesirable, or any other time when an application needs to construct a type at run-time. 

The DynamicType API includes the DynamicType and DynamicData entities, and the associated 

TypeSupport, DataReader, and DataWriter instances that work on DynamicData.  A DynamicData 

object represents an instance of a particular DynamicType. 

A DynamicType instance represents a specific data type.  It supports the complete type system that is 

available through IDL and XML; in other words, any DDS type that is legal in IDL can also be 

represented by a DynamicType. For example, it supports all primitive types, all collection and 

aggregate types, and all type enhancements (key, external, optional, etc).  A DynamicType can be built 

manually by calling on the API for DynamicTypeBuilderFactory and DynamicTypeBuilder.  

Alternatively, a DynamicType can be constructed from a TypeObject instance; for example, a type 

learned through discovery. 

A DynamicTypeSupport can be created from a DynamicType, and then can be used by a 

DynamicDataReader or DynamicDataWriter. 

The DynamicData API provides methods to access or modify data elements by name or id, and exposes 

the structure of the data so that an application can traverse complex embedded data instances. 

4.1 API 

4.1.1 DynamicTypeBuilderFactory 

The DynamicTypeBuilderFactory is a singleton object that is used to create and destroy 

DynamicTypeBuilder instances.  Further, it includes methods to create a DynamicTypeBuilder from an 

XML document or a URI pointing to an XML document. [Note, this feature is not yet implemented in 

CoreDX DDS.] 

4.1.2 DynamicTypeBuilder 

A DynamicTypeBuilder object represents the state of a particular type defined according to the Type 

System.  It is used to instantiate concrete DynamicType objects.  It includes methods to access or 

modify members (if representing a collection or aggregate type) by name or by id.  The 'build()' method 

constructs a DynamicType instance based on the current state of the DynamicTypeBuilder.  Subsequent 

changes to the DynamicTypeBuilder will not impact any current DynamicType instances. 

A DynamicTypeBuilder is obtained from the DynamicTypeBuilderFactory, and should be destroyed by 

calling the DynamicTypeBuilderFactory::delete_type_builder() method.  
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4.1.3 DynamicType 

An instance of DynamicType represent a type‟s schema: its physical name, kind, member definitions 

(if any), and so on.  A DynamicType can be passed as a parameter to the static method 

DynamicTypeSupport::create_type_support() to construct a DynamicTypeSupport. 

A DynamicType is obtained via the DynamicTypeBuilderFactory::get_primitive_type() method, or 

from a DynamicTypeBuilder::create_type() method.  All DynamicType instances should be destroyed 

by calling the DynamicTypeBuilderFactory::delete_type() method.  

4.1.4 DynamicTypeMember 

A DynamicTypeMember represents a "member" of a type. A "member" in this sense may be a member 

of an aggregated type, a constant within an enumeration, or some other type substructure.  A 

DynamicTypeMember contains a MemberDescriptor, a set of flags, and a set of annotations (maybe 

empty). 

4.1.5 TypeDescriptor 

A TypeDescriptor comprises the state of a type; that is, the 'kind', the name, the 'base_type' if it is an 

alias or if it is a structure that derives from some other type, the discriminator type if it is a union, the 

bound, if it is a collection, enum or bitmask, the element_type if it is a collection, and the 

key_element_type if it is a map. 

4.1.6 MemberDescriptor 

A MemberDescriptor represents the state of a DynamicTypeMember.  It contains the member name, 

the member id, the DynamicType that represents the member type, the index, the default_value, and the 

sequence of labels and a flag indicating if it is the default case (if part of a union). 

4.1.7 DynamicDataFactory 

The DynamicDataFactory is a singleton object responsible for creating DynamicData instances.  It 

provides two methods: create_data(DynamicType ) and the corresponding delete_data(DynamicData).  

4.1.8 DynamicData 

A DynamicData object represents an individual data sample. It provides reflective getters and setters 

for the members of that sample.  Many of the properties and operations on DynamicData refer to values 

within the sample, which are identified by name, member ID, or index.  What constitutes a value within 

a sample, and which means of accessing it are valid, depends on the type of the sample. 

 If this instance is of an aggregated type, values correspond to the type‟s members and can be 

accessed by name, member ID, or index. 

 If this instance is of a sequence or string type, values correspond to the elements of the 

collection. These elements must be accessed by index; the mapping from index to member ID is 

unspecified. 

 If this object is of a map type, values correspond to the values of the map. Map keys are 
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implicitly converted to strings and can thus be used to look up map values by name. Map values 

can also be accessed by index, although the order is unspecified. 

 If the object is of an array type, values correspond to the elements of the array. These elements 

must be accessed by index; the mapping from index to member ID is unspecified.  If the array is 

multi-dimensional, elements are accessed as if they were “flattened” into a single-dimensional 

array in the order specified by the IDL specification. 

 If the object is of a bit set type, values correspond to the flags within the bit set and are all of 

Boolean type. Named flags can be accessed using that name; any bit within the bound of the bit 

set may be accessed by its index. The mappings from name and index to member ID are 

unspecified. 

 If the object is of an enumeration or primitive type, it has no contained values. However, the 

value of the sample itself may be indicated by "name" using a nil or empty string, by "ID" by 

passing MEMBER_ID_INVALID, or by "index" by passing index 0.  

Note that indices used here are always relative to other values in a particular DynamicData object. 

Even though member definitions within aggregate types have a well-defined order, the same is not true 

within data samples or across data samples. 

Specifically, the index at which a member of an aggregated type appears in a particular data sample 

may not match that in which it appears in the corresponding type and may not match the index at which 

it appears in a different data sample. 

There are several reasons for these inconsistencies: 

 The producer of the sample may be using a slightly different variant of the type than the 

consumer, which may add to, or omit elements from, the set of members known to the 

consumer. 

 An optional member may have no value; in such a case, it will be omitted, thereby decreasing 

the index of every subsequent member. 

 A non-optional member may likewise be omitted (which semantically is equivalent to it taking 

its default value).  An implementation may discretionarily omit such members (e.g., to save 

space). 

 Preserving member order is not necessary or even desirable (e.g., for performance reasons) for 

certain data representations. 

The DynamicData API provides methods to get or modify values within the data instance.  The naming 

scheme of the accessors and modifiers is intuitive, for example get_int32_value() and 

set_int32_value().  

DynamicData instances obtained by calling DynamicDataFactory::create_data() should be destroyed by 

calling DynamicDataFactory::delete_data(). 
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4.1.9 DynamicDataReader 

The DynamicDataReader provides a DataReader interface that is tailored to support reading a specific 

DynamicType.  As with any TypeSupport, the corresponding DynamicTypeSupport must have been 

registered previously with the DomainParticipant.  The DynamicDataReader access data samples of 

type DynamicData that have a type construct identified by the DynamicType. 

4.1.10 DynamicDataWriter 

The DynamicDataWriter provides a DataWriter interface that is tailored to support writing samples of a 

specific DynamicType.  The specific DynamicTypeSupport must have been registered previously with 

the DomainParticipant.  The writer accepts DynamicData samples with a construct that is identified by 

the specific DynamicType. 

4.2 Usage / Examples 

4.2.1 C 

The C API to DynamicTypes and DynamicData is presented in the dds/xtypes.h header file.   

#include <dds/xtypes.h> 
 

The implementation is provided in the dds_dyntype library  

Operating System static library dynamic library dependencies 

linux libdds_dyntype.a libdds_dyntype.so libdds.a / libdds.so 

Windows dds_dyntype_static.lib dds_dyntype.dll dds_static.lib / dds.dll 

Table 5: C DynamicType libraries 

 

Here is a snipet of code that creates a structure with a single member of type int32 named 'an_int32'. 

#include <dds/xtypes.h> 

 

... 

 

DDS_ReturnCode_t ddsret; 

DDS_DynamicTypeBuilderFactory  dtbf; 

DDS_DynamicTypeBuilder         dstruct; 

 

dtbf    = DDS_DynamicTypeBuilderFactory_get_instance(); 

dstruct = DDS_DynamicTypeBuilderFactory_create_structure_type( dtbf ); 

if (dstruct != NULL)  

  { 

    DDS_MemberDescriptor  md; 

    DDS_MemberDescriptor_init(&md); 

    strcpy(md.name, "an_int32"); 

    md.id            = 0; 

    md.type          = DDS_DynamicTypeBuilderFactory_get_primitive_type(dtbf, 

DDS_INT_32_TYPE); 

    md.index         = 0; /* this defines the order of members expected in a CDR 

serialized stream */ 
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    ddsret = DDS_DynamicTypeBuilder_add_member(dstruct, &md); 

    if (ddsret != DDS_RETCODE_OK) 

      error...; 

    DDS_MemberDescriptor_clear(&md); /* add_member copies the descriptor */ 

 

    ...  

  } 

 

4.2.2 C++ 

The X-Types DynamicType API is presented in the C++ include file dds/xtypes.hh. 

#include <dds/xtypes.hh> 

 

The C++ DynamicType implementation is provided in the dds_cpp_dyntype library  

Operating System static library dynamic library dependencies 

linux libdds_cpp_dyntype.a libdds_cpp_dyntype.so libdds_cpp.a + libdds.a / 

libdds_cpp.so + libdds.so 

Windows dds_cpp_dyntype_static.lib dds_cpp_dyntype.dll dds_cpp_static.a + 

dds_static.lib /  

dds_cpp.dll + dds.dll 

Table 6: C++ DynamicType libraries 

 

4.2.3 C# 

The C# DynamicType API is not yet available. 

 

4.2.4 Java 

The X-Types DynamicType API is included in the standard coredx_dds.jar, so no additional JAR files 

are required. 

5 CoreDX Type Compiler (coredx_ddl) 
The CoreDX DDS type compiler can generate language specific type code from IDL, and generate IDL 

from XML containing DDS data types and/or interfaces.  The CoreDX DDS type compiler can be 

configured with a number of command line arguments, detailed in the next section. 

 

This document describes the options available to the CoreDX DDS version 5.6.0 type compiler.  Earlier 

versions may have fewer or different options.  It is recommended to use the “-h” option to the installed 

CoreDX DDS type compiler (coredx_ddl) for a list of options relevant to that version. 
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5.1 Command-line Options 

 

-a <0|1> Align cdr data with respect to CDR encapsulation header (backards 

compatible to CoreDX v3.2 and older) 

0 = CDR encapsulation header is not counted in data alignment (default) 

1 = CDR encapsulation header is counted in data alignment (backwards 

compatible with v3.2 and earlier) 

-b <filename prefix> Filename prefix for generated files (applies only to C and C++) 

-d <destination 

directory> 
Specify the directory for all generated files (default is current working 

directory) 

-D var[=value] Define a preprocessor macro (passed to preprocessor) 

-e <b|l> Specify the endian type for target platform (big | little). Default is the 

endian of the current host. 

-E <e|f|m> Specify the default extensibility for aggregate types (extensible, final, or 

mutable) 

-f <input filename> Specify the input file (required, unless the filename is provided as the last 

argument) 

-F Support full X-Types type system (without this, types are fully backwards 

compatible to CoreDX DDS v3.6.50 and earlier) 

-g Guard macros should use full path (C and C++) 

-G <guard variable> Specify the guard macro name (C and C++) 

-i <include_flags> 

-o <exclude_flags> 
include (or exclude with ^ prefix) code generation items: 

D: generated extra X-Types defined sample <-> DynamicData conversion 

API‟s (default: 0) 

 

e: generate scoped enum types. (impacts traditional C++ mapping only) 

(default: 0) 

 

g : generate Foo::get_field() routine for struct/union types  (default: 1) 

 

k: strict keyword case checking (default: no) 

 

K: keyword-identifier collision is an error (only effective if strict keyword 

case check is on) (default: off) 

 

O: generate TypeObject data in TypeSupport (default: 1) 

 

p : generate Foo::print() routine (default: 0) 

 

T : generate TypeCode data in TypeSupport (default: 1) 

 

x :  generate extra Type typedefs (default: 1) 

 

X : generate extra X-Types defined API's (get_type, create_sample(), 

create_dynamic_sample()) (default: 0) 

-I <include path> Specify include path (passed to preprocessor) 

-j java_version Controls some aspects of Java code generation (5 or 7) (default: 7) 
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-l <c|cpp|cpp11|csharp| 

    java|python|xml> 
Specify the output language (default: c) 

-L <license path> Specify the path to the coredx license file 

-p <preprocessor> Specify the preprocessor to use (default: coredx_cpp) 

-s Don't generate code for 'included' files 

-S Strip path from generated #include statements (only relevant if '-s' is in 

effect) 

-t <toggle_flags> Toggle code generation items (see -i option) 

-T Suppress generation of „typecode‟ data inline in TypeSupport 

-v Print the version of the coredx compiler 

-X  Specify that input file is in XML format 

-Wno-<warning. Disable the warning „<warning>‟ (for example -Wno-1091) 

--unboundedLenHack <x> Specify the value to represent an unbounded sequence or map (default: 0) 

--unboundedStrLenHack <x> Specify the value to represent an unbounded string (default: 0) 

--noDiscriminatorGrok Don‟t set the „must-understand‟ flag on the union discriminator 

This impacts the TypeObject (used for discovery) describing a Union type, 

and will also impact how MUTABLE union data is marshaled. 

The standard specifies union discriminators have the „must-understand‟ flag 

set, however, some DDS products have trouble with this flag.  

  

--javaEnum Causes IDL „enum‟ types to be mapped to Java „enum‟  (Java) 

--keywordEscape Causes leading underscore from symbols.   

Example: 

IDL symbol “_in” will not conflict with the IDL reserved keyword “in”, 

and will become “in” in the generated code. 

Table 7: CoreDX DDS IDL compiler command-line (coredx_ddl) 

 

 

6 EXAMPLES / PATTERNS 

6.1 Type Truncation 

This can arise when the writer is publishing a type (TW) that contains “more data” than the reader 

type(TR) expects.  In order for, the Reader and Writer to match, the data types must be determined to 

be compatible.  [More specifically TW must be assignable to TR.] 

The assignability rules vary based on the extensibility of the types.  [NOTE: for a type to be assignable 

to another type, the extensibility of the two types must match.] 

For example, consider the following two structures: 

struct WriterType { 

 long  x; 
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 long  y; 

      long  z; 

}; 

and, 

struct ReaderType { 

 long  x; 

 long  y; 

}; 

 

If the extensibility of the types is FINAL, then they are not assignable because the number of members 

does not match.  As a result, the Reader and Writer would not match. 

If the extensibility is EXTENSIBLE or MUTABLE, then the types are assignable. 

When the reader receives a sample, the “extra” data (member 'z' in this case) will be quietly discarded, 

and the application will be presented with a sample containing 'x' and 'y'. 

In order to prohibit the data truncation, the writer type could be defined with the @must_understand 

annotation assigned to the member 'z' (or, for completeness, to all members).  For example: 

struct WriterType { 

               long  x; 

               long  y; 

   @must_understand long  z; 

}; 

 

Then, a reader would be obligated to accept all of the data or none.  As a result, the absence of member 

'z' in the ReaderType would cause the types to not be assignable, and the Reader and Writer would not 

match. 

Consider the more complex example: 

struct W_InnerType{ 

 long  x; 

 long  y; 

      long  z; 

}; 

 

struct WriterType { 

      long          kind; 

 W_InnerType   loc; 

      long          extra; 

}; 

and, 

struct R_InnerType{ 

 long  x; 

 long  y; 

}; 

 

struct ReaderType { 

 long        kind; 

 R_InnerType loc; 

}; 
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If extensibility is FINAL or EXTENSIBLE, the types are not assignable. 

If Extensibility is MUTABLE, then the types are assignable, and the reader will truncate the data as 

expected. 

[NOTE: The behavior of this example depends on the X-Types version, the X-Types v1.1 specification 

(expected late 2017), will specify slightly different behavior.] 

6.2 Type Expansion 

This can arise when the writer is publishing a type (TW) that contains “less data” than the reader 

type(TR) expects.  In order for, the Reader and Writer to match, the data types must be determined to 

be compatible.  [More specifically TW must be assignable to TR.] 

The assignability rules vary based on the extensibility of the types.  [NOTE: for a type to be assignable 

to another type, the extensibility of the two types must match.] 

For example, consider the following two structures: 

struct WriterType { 

 long  x; 

 long  y; 

}; 

and, 

struct ReaderType { 

 long  x; 

 long  y; 

 long  z; 

}; 

 

If the extensibility of the types is FINAL, then they are not assignable because the number of members 

does not match. 

If the extensibility is EXTENSIBLE or MUTABLE, then the types are assignable.  When the reader 

receives a sample, the “missing” data (member 'z' in this case) will be set to its default value (0), and 

the application will be presented with a sample containing 'x', 'y', and 'z'.  

6.3 Type Inheritance 

The type system now allows the creation of types using inheritance.  This applies only to structure 

types.  A structure can be declared to inherit from a parent structure.  For example: 

struct BaseType { 

 long  x; 

 long  y; 

}; 

 
struct ChildType : BaseType { 

 long  z; 

}; 

 

For the purposes of type assignability and data processing, an inherited type behaves as if the members 
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of the parent type were expanded directly inside the child type.  So, ChildType behaves the same as if it 

had been declared: 

 struct ChildType { 

  long  x; 

  long  y; 

  long  z; 

 }; 

 

 

 


