

CoreDX DDS

Sample and Instance
Management

2

2 CoreDX DDS Sample and Instance Management

Contents
Introduction ... 4

The Data Cache ... 4

Overview of Publisher Management ... 4

Overview of Subscriber Management ... 4

Instance Lifecycles .. 5

Registering Instances... 5

Unregistering Instances ... 6

Disposing Instances ... 6

Instance Handles ... 7

Liveliness (of DataWriters) ... 7

Effect of Qos Policy Settings ... 8

Reliability .. 8

Reliability and the DataWriter Cache ... 8

Reliability and the DataReader Cache .. 9

Durability .. 9

Durability and the DataWriter Cache .. 9

Durability and the DataReader Cache ... 10

History ... 10

History and the DataWriter Cache .. 10

History and the DataReader Cache ... 11

Resource Limits .. 11

Resource Limits and the DataWriter Cache .. 12

Resource Limits and the DataReader Cache ... 12

Reader Data Lifecycle ... 13

Writer Data Lifecycle .. 13

Writer Data Lifecycle and the DataWriter Cache ... 13

Writer Data Lifecycle and the DataReader Cache .. 14

Ownership ... 14

Lifespan ... 14

Lifespan and the DataWriter Cache .. 14

Lifespan and the DataReader Cache ... 14

Filters (Time Based Filter, Content Filters) .. 15

In Review: Adding to and Removing from the Data Caches ... 15

DataWriter Cache .. 15

DataReader Cache ... 16

3

3 CoreDX DDS Sample and Instance Management

Copyright 2011 Twin Oaks Computing, Inc, 755 Maleta Ln, Ste 203 Castle Rock, Colorado

80108 U.S.A. All rights reserved.

This document describes the management of samples and instances in CoreDX DDS.

CoreDX, CoreDX DDS, and the CoreDX DDS logo are trademarks of Twin Oaks Computing,

Inc. Object Management Group, OMG, and DDS are trademarks of the Object Management

Group. All other products or company names mentioned are used for identification purposes

only, and may be trademarks of their respective owners.

DISCLAIMER OF WARRANTY. THIS DOCUMENT IS PROVIDED "AS IS” AND ALL

EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO

THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

4

4 CoreDX DDS Sample and Instance Management

Sample and Instance Management in
CoreDX DDS

Introduction
The concept of samples and instances is an important aspect of the DDS middleware technology and it

impacts almost every feature within the DDS architecture. This document discusses the management of

samples and instances within CoreDX DDS.

A sample is data of the appropriate DDS data type that has been published to a DDS Topic. A DDS data

type may have a key which is composed of one or more data fields. The CoreDX DDS middleware uses

the key to organize the published data. An instance is a collection (which could be empty) of samples

with the same value in the key field(s). An instance is uniquely identified by an instance handle.

The Data Cache
Each DataReader and DataWriter contains its own Data Cache for storing samples and instances. A

DataWriter Cache contains samples and instances that the DataWriter has published. A DataReader

Cache contains samples and instances that the DataReader has received (subject to filtering and other

QoS Policy settings). In general, these samples and instances are removed when they are no longer

needed by the application or the CoreDX DDS middleware. The specific management of samples and

instances in the Data Caches is described in the following sections.

Overview of Publisher Management
 On the publishing side of CoreDX DDS communications, samples represent data that may be sent to

DataReaders. Samples are created for every write(), unregister(), and dispose() call made by the

application. Each sample is associated with a particular instance. In general, samples are added to the

DataWriter Cache by write(), unregister_instance(), and dispose() calls made by the application. In

general, instances are added to the DataWriter Cache (if they are not already there) by

register_instance(), write(), unregister_instance(), and dispose() calls made by the application.

In general, samples and instances are stored in the DataWriter Cache until they are delivered to all

appropriate DataReaders, at which point the samples and instances may be removed from the cache.

The specific rules for maintaining and deleting samples from the DataWriter Cache are different from

the rules for maintaining and deleting instances. For this reason, it is possible for all samples on an

instance to be removed from the cache, while the instance remains (with no associated samples). In

contrast, it is not possible to remove an instance from the cache while any samples associated with it

remain.

Overview of Subscriber Management
On the subscribing side of CoreDX DDS communications, samples represent the data that has been

received by the middleware and may be made available to the subscribing application (filters or other

5

5 CoreDX DDS Sample and Instance Management

QoS policy settings may preclude samples from reaching the application). Each received sample is

associated with a particular instance. In general, samples and their associated instances are added to

the DataReader Cache as they are received by the middleware.

In general, samples and instances are stored in the DataReader Data Cache until they are explicitly

removed by the subscribing application, or the CoreDX DDS middleware removes them based on various

QoS policy settings. Similar to the DataWriter Data Cache management, the specific rules for

maintaining and deleting samples from the DataReader Data Cache are different from the rules for

maintaining and deleting instances. For this reason, it is possible for all samples on an instance to be

removed from the cache, while the instance remains (with no associated samples). In contrast, it is not

possible to remove an instance from the cache while any samples associated with it remain.

Instance Lifecycles
Instances are used to manage the DDS data lifecycle. Instances are created, either explicitly by the

application, or automatically when a sample on the instance is written. Instances are updated when

additional samples on the instance are written. Instances are (logically) deleted, either explicitly by the

application, or automatically when the DataWriter (or DataWriter’s application) exits. These data

lifecycle operations play an important role in the management of both the DataWriter and matched

DataReaders Caches. This section provides an overview of the instance lifecycle within CoreDX DDS,

including general effects on the Data Caches. The specific events within the Data Caches depend on

several DataWriter and DataReader QoS policy settings, and are documented in later sections of this

document.

Registering Instances
Every data sample that is published belongs to an instance. If the data type does not have a key

specified, then every sample that is published belongs to the same instance. If the data type has a key

specified, then each sample is grouped and assigned an instance based on the value of that key field(s).

Instances must be registered with the DataWriter before any samples associated with that instance can

be written (or deleted).

When a publishing application registers an instance with a DataWriter, the instance is added to that

DataWriter Cache. However, a sample will not be added to the DataWriter Cache. An instance must be

registered with the DataWriter before write(), unregister_instance(), or dispose() can be called for that

instance. Publishing applications can use the DataWriter::register_instance() operation to explicitly

register instances. As a convenience, CoreDX DDS will automatically register an instance when the

application calls one of the write(), unregister_instance(), or dispose() operations without first

registering the instance. When this happens, both a sample and an instance are added to the

DataWriter Cache: an instance for the implicit register operation, and a sample for the written sample,

unregister, or dispose.

Register instance operations are applicable only to DataWriters, and are not communicated to

DataReaders. A DataReader does not have an interface to explicitly register instances. Instead,

instances are created in the DataReader cache automatically based on the reception of samples. When

6

6 CoreDX DDS Sample and Instance Management

a DataReader receives a sample, a sample is added to its Data Cache (if possible based on QoS policies).

If the sample’s associated instance is new to this DataReader, an instance will also be added to its

DataReader Cache.

Unregistering Instances
The publishing application can unregister a previously registered instance by calling

DataWriter::unregister_instance(). This indicates the application will no longer write any samples on

this instance with this DataWriter. This is not the same as disposing an instance, which is described

below.

When a publishing application unregisters an instance with a DataWriter, CoreDX DDS may remove the

instance (and all related samples) from that DataWriter Cache. The actual removal from its Data Cache

may be delayed, depending on QoS policy settings. For example, a DataWriter configured with

Reliability.kind = RELIABLE will not remove an unregistered instance (and samples) from its Data Cache

until all matched, Reliable DataReaders have successfully acknowledged all samples for the instance.

After an instance has been unregistered from that DataWriter, the instance handle associated with that

instance is invalid. This is because the CoreDX DDS middleware may have removed all records of that

instance. After an unregister operation, the instance handle may be reused for a different instance. If

necessary, the application may re-register the instance (obtaining a new handle for it) and then continue

to publish samples or a dispose on the instance.

Unregister operations are communicated to matched DataReaders and indicate that the DataWriter is

no longer actively writing on this instance. The DataReader will remove this DataWriter from the

instance’s list of active DataWriters. When this list of alive, actively writing DataWriters becomes

empty, the state of the instance in the DataReader Cache will change to NOT_ALIVE_NO_WRITERS.

When a DataReader receives an unregister command, it creates a sample and (if this is the first sample

for this instance) an instance in its Data Cache. In general, the unregister command is treated like a data

sample: it stays in the DataReader Cache until it is taken by the subscribing application. However, there

are QoS policy settings that may trigger automatic processing by the CoreDX DDS middleware when the

sample expires or the instance state changes to NOT_ALIVE_NO_WRITERS. If enabled, this automatic

processing may automatically purge the instance and related samples from the DataReader Cache.

When a DataWriter is deleted by the publishing application, CoreDX DDS will automatically send an

unregister command to matched DataReaders for every instance in that DataWriter Cache. If the

publishing application exits without deleting its DataWriter Entities, the DataReader will not receive the

unregister commands. In this case, the DataReader will eventually determine that the DataWriter is not

alive, and then remove the DataWriter from the list of alive and actively writing DataWriters on each

instance in its DataReader Cache.

Disposing Instances
The publishing application can dispose a previously registered instance by calling DataWriter::dispose().

The standards define a dispose operation as an indication that the instance no longer exists. However,

this is an application level concept, and has very little meaning to the CoreDX DDS middleware. CoreDX

7

7 CoreDX DDS Sample and Instance Management

DDS treats a dispose very much like an application written data sample. The dispose command is added

to the DataWriter Cache as a sample. If the instance for this sample is not already registered, CoreDX

DDS will automatically register it before adding the dispose sample to its Data Cache.

Unlike the unregister command, the dispose command does not cause the DataWriter to perform any

special management of the instance in its Data Cache.

Dispose operations are communicated to matched DataReaders. The DataReader will change the state

of the associated instance in its Data Cache to NOT_ALIVE_DISPOSED. Note that the DataWriter will still

be considered an alive, actively writing DataWriter on this instance.

When a DataReader receives a dispose command it creates a sample and (if this is the first sample for

this instance) an instance in its Data Cache. In general, the dispose command is treated like a data

sample: it stays in the DataReader Cache until it is taken by the subscribing application. However, there

are QoS policy settings that may trigger automatic processing by the CoreDX DDS middleware where the

sample expires or the instance state changes to NOT_ALIVE_DISPOSED. If enabled, this automatic

processing may automatically purge the instance and related samples from the DataReader Cache.

Instance Handles
An instance handle is a value that can be used to uniquely identify a registered instance. An instance

handle is generated when an instance is registered (returned from a DataWriter::register_instance() call)

and will be used to identify the instance until that instance is unregistered. The instance handle is valid

only while the instance is registered. Once an instance is unregistered, the instance handle can no

longer be used to identify that instance. This is a critical detail of the CoreDX DDS middleware. Instance

handles may be reused, and, after an unregister operation the old instance handle may identify a

different instance. If the unregistered instance is re-registered, a different handle may be assigned for

the next ‘life’ of that instance.

Liveliness (of DataWriters)
CoreDX DDS maintains a concept of Liveliness that is applied to DataWriters. A DataWriter may be

considered alive for a number of reasons:

a. The DataWriter is actively writing data (and has not missed any deadlines as configured via the

Deadline QoS policy)

b. The DataWriter is related to other DataWriters (by having the same publisher) that are alive

c. The DataWriter belongs to an DomainParticipant that is alive, or

d. The publishing application explicitly calls DataWriter::assert_liveliness() periodically

Depending on the configuration of the DataWriter’s Liveliness QoS policy, failure to meet one or more of

the above conditions may result in the DataWriter becoming not alive. The liveliness of a DataWriter

can have an effect on Data Caches of matched DataReaders.

DataReader Caches contain a list of matched, alive, and actively writing DataWriters for each instance in

the Cache. If an instance has at least one of these matched, alive, and actively writing DataWriters, the

instance state is ALIVE. If an instance does not have any of these matched, alive, and actively writing

8

8 CoreDX DDS Sample and Instance Management

DataWriters, the instance state is NOT_ALIVE_NO_WRITERS. This status, along with the configuration of

other QoS policies described below effect the management of the instance and associated samples in

the DataReader Cache.

Effect of Qos Policy Settings
Data caches are sized and managed according to the configuration of several QoS policies. The following

table provides an overview of the QoS Policies that affect Data Cache Management, along with where

they are set and which Data Caches (DataReader, DataReader, or both) they affect.

QoS Policy Configuring this policy on the: Will effect Cache Management on the:

RELIABILITY
DataWriter and DataReader
DataReader

DataWriter
DataReader

DURABILITY DataWriter DataWriter and DataReader

HISTORY
DataWriter
DataReader

DataWriter
DataReader

RESOURCE_LIMITS
DataWriter
DataReader

DataWriter
DataReader

READER_DATA_LIFECYCLE DataReader DataReader

WRITER_DATA_LIFECYCLE DataWriter DataReader

OWNERSHIP DataWriter DataReader

LIFESPAN DataWriter DataWriter and DataReader

Filters
(TIME_BASED_FILTER,
content filters)

DataReader DataReader

Table 1

Reliability
The Reliability QoS policy configures the level of reliability CoreDX DDS will guarantee for

communications between a DataReader and DataWriter. With a Best Effort Reliability configuration,

CoreDX DDS will make an effort to deliver all published data, but there is no guarantee all data will be

received by all matched DataReaders. With a Reliable configuration, CoreDX DDS will guarantee all

published data will be received by all DataWriters.

Reliability and the DataWriter Cache

Both Reliable and Best Effort DataWriters add samples and instances to their Data Caches in the same

way, under the same circumstances. A sample is added when it is written (DataWriter::write() is called),

when an instance is unregistered (DataWriter::unregister_instance() is called), and when an instance is

disposed (DataWriter::dispose() is called). Instances are added to DataWriter Caches (both Reliable and

Best Effort DataWriters) when they are registered.

9

9 CoreDX DDS Sample and Instance Management

A Best Effort DataWriter will remove samples from its Data Cache as soon as they are written on the

wire. Instances are kept in the DataWriter cache until the application explicitly unregisters them. At

that time, the instance and its associated samples (if any) are removed from that DataWriter Cache.

A Reliable DataWriter will keep samples in its Data Cache until they have been acknowledged by all

matched Reliable DataReaders. [Best Effort DataReaders are not required to acknowledge samples.]

Once a sample has been acknowledged by all matched Reliable DataReaders, it will be removed from

the cache. Instances are kept in the DataWriter Cache until the application explicitly unregisters them.

The instance will be removed once all associated samples have been removed (samples are removed

when they have been received and acknowledged by matched, Reliable DataReaders).

Reliability and the DataReader Cache

The Reliability QoS policy has a more subtle effect on DataReader Caches. In general, DataReaders add

samples and instances to their Data Cache as they are received. However, Reliable DataReaders and

Best Effort DataReaders matched with the same DataWriters may have different samples and instances

in their Data Caches.

With a Best Effort DataReader, samples may be missed. Because the DataReader is Best Effort, these

samples will not be recovered. Missed data samples are data samples that are not added to the

DataReader Cache. Missed unregister commands are samples that are not added to the DataReader

Cache, and furthermore, they will cause the state of the instance to remain ALIVE, when it is possible

that the instance should be NOT_ALIVE_NO_WRITERS. Similarly, missed dispose commands are samples

that are not added to the DataReader Cache, and furthermore, they will cause the state of the instance

to remain ALIVE, when that instance should be NOT_ALIVE_DISPOSED.

Durability
The Durability QoS Policy configures how long data will be saved by the DataWriter, in order to make it

available to late joining DataReaders. [A ‘late joining’ DataReader is a DataReader that is enabled after a

DataWriter has published some data samples.] The publish-subscribe paradigm offered by CoreDX DDS

allows applications to write data even when there are no current readers on the network. Further, a

DataReader has the option to receive historical data (data published before this DataReader was

enabled) in addition to currently published data. The Durability policy supports this configuration.

Volatile DataWriters will not save previously published data for late joining readers. Transient Local

DataWriters that are also Reliable will save previously published data for the life of the DataWriter and

make this data available to late joining DataReaders. The additional Durability kinds (Transient and

Persistent) are not currently supported by CoreDX DDS.

Durability and the DataWriter Cache

The Volatile Durability kind does not affect the DataWriter Cache management – the behavior is

determined by only by the other QoS policies documented here.

A Transient Local DataWriter may delete instances from its Data Cache only when the publishing

application unregisters them by calling DataWriter::unregister_instance(). When this happens, a

Reliable Transient Local DataWriter will wait for all currently matched DataReaders to acknowledge all

10

10 CoreDX DDS Sample and Instance Management

samples associated with this instance before removing the instance from the Data Cache. Similarly, a

Best Effort Transient Local DataWriter will wait until all current samples have been written onto the wire

before removing the instance.

For Transient Local DataWriters, samples may be deleted from a DataWriter Cache only when the

associated instance is deleted from the Data Cache, a sample expires due to Lifespan QoS policy

settings, or the History QoS policy kind is set to KEEP_LAST.

Durability and the DataReader Cache

The Durability QoS policy has a more subtle effect on DataReader Caches. The Durability QoS policy

does not affect when samples and instances are removed from the DataReader Cache, but it can affect

which samples are added to the DataReader Cache. In general, DataReaders add samples and instances

to their Data Cache as they are received. However, Volatile DataReaders and Transient Local

DataReaders matched with the same DataWriters may have different samples and instances in their

Data Caches.

A DataWriter may register, write samples on, dispose, and unregister an instance before a DataReader is

created and matched with that DataWriter. If this DataReader is Volatile, these historical samples will

not be sent, and will not be added to the DataReader Cache. If this DataReader is Transient Local, these

historical samples will be sent and added to the DataReader Cache, resulting in samples and instances in

the Transient Local DataReader Cache that are not in the Volatile DataReader Cache.

History
The History QoS policy controls the number of data samples CoreDX DDS will store and manage for each

instance in the Data Cache. The History QoS policy controls the amount of buffering provided by both

the DataWriter and DataReader. On a DataWriter, the History QoS policy determines the amount of

data history that is preserved to be retransmitted to Reliable DataReaders or provided to late joining

Transient Local DataReaders. On a DataReader, this policy will determine the number of samples

available to return on a read() or take() operation.

In general, with a History kind of KEEP_ALL, CoreDX DDS must keep all samples in the Data Caches

subject to other QoS policy configurations (for example, resource limits and reliability). In general, with

a History kind of KEEP_LAST, CoreDX DDS may remove older samples for an instance in order to make

room for newer samples on the same instance. With KEEP_LAST, the number of samples maintained in

the Data Cache for each instance is specified by the History depth setting.

History and the DataWriter Cache

The DataWriter Cache contains samples and instances that have been written by the publishing

application. DataWriters that are Reliable or Transient Local and Reliable may keep samples in the cache

after they have been initially published. [A DataWriter that is Best Effort, or Reliable with no matched

Reliable DataReaders, may remove samples from its Data Cache after they have been initially published

on the network.] The History QoS policy settings on the DataWriter help determine how many of these

samples are kept in the DataWriter Cache.

11

11 CoreDX DDS Sample and Instance Management

A Reliable and Volatile DataWriter with a History kind of KEEP_ALL will keep samples (subject to

resource limits) in its Data Cache until all currently matched Reliable DataReaders have received and

acknowledged the sample. At that time, the sample can be removed from the DataWriter Cache.

A Reliable and Transient Local DataWriter with a History kind of KEEP_ALL will keep samples (subject to

resource limits) in its Data Cache until the publishing application unregisters the associated instance.

If either of these Reliable KEEP_ALL DataWriters runs out of room in its Data Cache (this could happen in

combination with Resource Limits QoS policy settings if a Reliable DataReader is not acknowledging

samples in a timely manner or with any Transient Local DataWriter if the application does not unregister

instances), any operation that creates a sample (write(), unregister_instance(), dispose()) will either

return an error or block the application. The amount of time a DataWriter will wait for room in its Data

Cache is controlled by the reliability.max_blocking_time setting.

A DataWriter with a History kind of KEEP_LAST will keep no more than History depth samples for each

instance in its Data Cache. If a DataWriter runs out of room in its Data Cache (under similar conditions

as above), it will remove an old sample to make room for the new sample. The removed sample is no

longer available for transmission to DataReaders.

History and the DataReader Cache

The DataReader Cache contains samples and instances that have been received by the middleware and

may be made available to the subscribing application. The History QoS policy settings on the

DataReader help determine how many of these samples are kept in the DataReader Cache.

In general, received samples are not removed from the DataReader Cache until the subscribing

application calls DataReader::take(), the samples expire with the Lifespan QoS policy, or the associated

instance is removed per Reader Data Lifecycle QoS policy settings. If the subscribing application does

not use the take() operation, received samples can accumulate in the DataReader Cache.

A Reliable DataReader with a History kind of KEEP_ALL will not overwrite samples in its Data Cache. If

this DataReader runs out of room in its Data Cache (this could happen in combination with Resource

Limits QoS policy settings) any received samples that do not fit in the DataReader Cache are dropped

and are not acknowledged to the DataWriter. [Refer to the discussion on Reliability for resulting

behavior at the DataWriter.]

A DataReader with a History kind of KEEP_LAST will keep no more than History depth samples for each

instance in its Data Cache. If a Keep Last DataReader runs out of room in its Data Cache (under similar

conditions as above), it will remove an old sample to make room for the new sample. The removed

sample is no longer available to the subscribing application.

Resource Limits
The Resource Limits QoS policy sets an upper bound on the number of samples and instances that can

be stored in the DataReader or DataWriter Cache. The specific Resource Limits that can be configured

are: max samples (the total number of samples in the Data Cache), max instances (the total number of

instances in the Data Cache), and max samples per instance (the total number of samples associated

with each instance in the Data Cache).

12

12 CoreDX DDS Sample and Instance Management

The Resource Limits and History QoS policies can be used in concert to configure the management of

samples in the Data Caches (DataWriter and DataReader Caches). With a Reliability kind of Reliable and

a History kind of KEEP_ALL, and max samples or max samples per instance Resource Limits configured

(that is, not INFINITE), the CoreDX DDS middleware will not remove an old sample to make room for a

new sample. With a History kind of KEEP_LAST and either max samples or max samples per instance

Resource Limits configured, the middleware is allowed to remove older samples to make room for

newer samples if necessary.

The Resource Limits QoS policy can also be used to configure the management of instances in the Data

Caches (DataWriter and DataReader Caches). However, careful consideration is recommended before

configuring the max instances Resource Limits, since there are configurations that can effectively

deadlock a DataWriter from publishing any more samples, or a DataReader from processing any more

samples from that DataWriter. For example, consider a Reliable, Keep All DataReader with max

instances set to 10, matched with a DataWriter that has published samples on 11 instances. When the

DataWriter publishes the first sample on the 11th instance, the DataReader will be unable to accept it,

due to the max instances resource limits. The Reliable DataReader will not acknowledge this new

sample (or any subsequent samples from the DataWriter), effectively blocking that DataWriter.

This is a problem that arises only with the QoS policy combination of Reliable Reliability, Keep All

History, and max instances!=INFINITE Resource Limits. To eliminate this possible deadlock scenario with

max_instances, it is recommended to always set max instances such that the DataWriter max_instances

is <= the DataReader max_instances.

Resource Limits and the DataWriter Cache

Data Writers that are Reliable and Keep All have the potential to block or return an error when the

publishing application attempts to add a sample or instance to a “full” DataWriter cache. An operation

that creates an instance in the DataWriter Cache (an operation that results in registering a new instance)

will fail or block when the max_instances Resource Limit is reached. An operation that attempts to add

a sample to the DataWriter Cache (a write(), unregister_instance(), or dispose() operation) will fail or

block the publishing application when the History kind is KEEP_ALL and the max samples or max samples

per instance Resource Limit is reached. The amount of time these operations will block is controlled by

the Reliability max_blocking_time setting.

DataWriters that are Best Effort or Keep Last will block only when the publishing application performs an

action on the DataWriter that will create a new instance and the max instances Resource Limit has been

reached. Both these types of DataWriters are able to remove an old sample to make room for a new

one, so operations that just create a new sample will not block or return an error.

Resource Limits and the DataReader Cache

A DataReader that is Reliable and Keep All has the potential to REJECT received samples when its Data

Cache is full. When max samples or max samples per instance limits are reached, any received sample

will be rejected, until samples are removed from the DataReader Cache. When max instances limits are

reached, any received sample on that instance will be rejected. A sample that is rejected is not

acknowledged. This can impact the DataWriter that published the sample, if the DataWriter is

13

13 CoreDX DDS Sample and Instance Management

configured as Reliable and KEEP_ALL. This DataWriter will not delete any samples (or related instances)

from its Data Cache until all currently matched DataReader have acknowledged them.

DataReaders that are Best Effort or Keep Last are able to drop samples without impact to the publishing

DataWriter. These dropped samples are acknowledged so the DataWriter will consider them to be

delivered.

Reader Data Lifecycle
The Reader Data Lifecycle QoS policy directly controls the management of samples (and indirectly

controls the management of instances) in the DataReader Cache. This QoS policy has no effect on the

DataWriter Cache.

The Reader Data Lifecycle policy allows samples to be automatically removed from the DataReader

Cache. When the autopurge nowriter samples delay is configured to non-INFINITE samples will be

removed from the DataReader Cache when the associated instance state becomes

NOT_ALIVE_NO_WRITERS (after the configured delay period). When the autopurge disposed samples

delay is configured to non-INFINATE, samples will be removed from the DataReader Cache when the

associated instance state becomes NOT_ALIVE_DISPOSED.

Instances will be removed from the DataReader Cache when there are no associated samples in the

DataReader Cache and the instance state is NOT_ALIVE_NO_WRITERS. Because the Reader Data

Lifecycle policy may remove all samples from an instance with a state of NOT_ALIVE_NO_WRITERS, it

may also cause the instance to also be removed.

Writer Data Lifecycle
The Writer Data Lifecycle QoS policy controls the behavior of the DataWriter with regard to the lifecycle

of instances it is maintaining. This QoS policy has one option: auto-dispose unregistered instances that

can be set to TRUE or FALSE. When set to TRUE, CoreDX DDS will automatically dispose instances when

they are unregistered by the publishing application. Since the dispose operation must have a registered

instance to work on, it is applied first, and then the unregister operation is applied to the instance.

When a DataWriter is deleted by the publishing application, an unregister operation is automatically

applied to all the instances in that DataWriter Cache. When the auto-dispose unregistered instances

option is set to TRUE, a dispose operation is also automatically applied to all instances in that

DataWriter Cache. [Again, the dispose operation is applied before the unregister operation.]

Writer Data Lifecycle and the DataWriter Cache

When the publishing application unregisters an instance on a DataWriter with its Writer Data Lifecycle

QoS policy configured to automatically dispose unregistered instances, the DataWriter will create a

sample (and add it to its Data Cache) for the user-invoked unregister instance operation. If

autodispose_unregistered_instances is TRUE, CoreDX DDS will combine a dispose operation with the

unregister operation. [An additional sample is not created (and not added to its Data Cache) for the

automatic dispose operation.]

14

14 CoreDX DDS Sample and Instance Management

Writer Data Lifecycle and the DataReader Cache

If autodispose_unregistered_instances is TRUE at the DataWriter, CoreDX DDS will send a combined

dispose and unregister sample to matched DataReaders. The combined dispose and unregister sample is

added to the instance.

Ownership
The Ownership QoS policy controls whether CoreDX DDS will allow multiple DataWriters to update the

same instance at the same time. The possible values for Ownership are: Shared and Exclusive. When

set to Shared, CoreDX DDS does not enforce unique ownership for each instance, and multiple

DataWriters can update the same instance at the same time. When set to Exclusive, each instance can

be modified by only one DataWriter. In this case, each instance has only one DataWriter that is

considered the owner, and while that DataWriter is “alive”, it is the only writer allowed to update the

instance.

This Ownership management is applied at the DataReaders, and affects the DataReader Cache. It has no

effect on the DataWriter Cache.

An Exclusive Ownership DataReader will still maintain a list of alive and actively writing DataWriters for

each instance, but only one of those DataWriters can be the current owner. Each instance has its own

current DataWriter owner. Samples received from any DataWriter other than the owner for that

instance will be discarded, and are not added to the DataReader Cache.

Lifespan
The Lifespan QoS policy allows CoreDX DDS to expire old data samples. The Lifespan QoS policy has a

duration which is the amount of time that may pass after a sample has been published before the

sample is considered expired.

Lifespan and the DataWriter Cache

Samples that are expired by the Lifespan QoS policy configuration are removed from the DataWriter

cache. This is applicable for Reliable DataWriters: samples that are in the DataWriter Cache (because

they have not been acknowledged by all matched Reliable DataReaders) can be removed after they

expire. This is also applicable for Transient Local and Reliable DataWriters: samples that are in the

DataWriter Cache because they need to be saved for future matched Transient Local and Reliable

DataReaders may be removed after they expire.

[Note: Currently CoreDX DDS does not expire samples from a DataWriter’s Data Cache based on

Lifespan.]

Lifespan and the DataReader Cache

The Lifespan Qos policy setting is configured on the DataWriter by the publishing application, and is

communicated to matched DataReaders. If the Lifespan duration is not INFINITE, a DataReader will

remove samples from their Data Cache when they expire.

15

15 CoreDX DDS Sample and Instance Management

Filters (Time Based Filter, Content Filters)
CoreDX DDS provides the subscribing applications with options for filtering the data that is received by

DataReaders.

The Time Based Filter QoS policy allows the application to indicate it does not necessarily want to see all

data samples published for a Topic. In fact, the DataReader wants to see, for each instance, at most one

data sample every time period. This time period is the minimum_separation for the Time Based Filter.

Since the Time Based Filter operates on a per instance basis, the application of this filter will not affect

the number of instances add to the DataReader Cache, only the number of samples that are added to

the DataReader Cache.

The Content Filtered Topic is not a QoS policy, but a specialized kind of Topic where the subscribing

application can apply a filter to its subscription. The filter is an SQL like statement. The

ContentFilteredTopic is associated with another known Topic and applies a filter to the data available on

that related topic. Since the Content Filter filters on the content of each data sample, it is possible that

the filter can affect the number of samples and the number of instances created in the DataReader

Cache.

In both of these filters, the DataReader filters the data before it is inserted into the DataReader Cache.

That means only samples that pass through the filter will be added to the DataReader Cache. Filters are

applied only to data samples – not to dispose and unregister commands.

When a sample is filtered, its associated instance is still created and added to the DataReader Cache (if

not already there). This may result in instances in the DataReader cache that never have data samples

associated with them. Since dispose and unregister samples always pass through filters, the states of

these instances will be maintained appropriately, even if none of the samples associated with this

instance are passed through the filter.

In Review: Adding to and Removing from the Data Caches
This section takes a step back from the details of CoreDX DDS QoS policies to look at the conditions

where the Data Caches may grow (samples or instances are added to the Data Cache) or shrink (samples

or instances are removed from the Data Cache).

DataWriter Cache
Samples are added to the DataWriter Cache under the following conditions:

 The publishing application creates a sample and there is room in its DataWriter Cache for the

new sample, or if there is not room in its DataWriter Cache, the History QoS policy is configured

for KEEP_LAST. Write, Unregister, and Dispose operations (DataWriter::write(),

DataWriter::unregister_instance(), DataWriter::dispose(), and all variants of these operations)

cause a sample to be created and added to the DataWriter Cache.

Samples are removed from the DataWriter Cache when:

16

16 CoreDX DDS Sample and Instance Management

1. The CoreDX DDS middleware in the publishing application has completed writing the sample.

This happens when:

o The CoreDX DDS middleware writes the sample to all Best Effort DataReaders AND

o (Only if the DataWriter is Reliable and Volatile) The CoreDX DDS middleware has

received an acknowledgement from all Reliable DataReaders

; or,

2. Samples expire based on the Lifespan duration; or,

3. A DataWriter has a History QoS Policy of KEEP_LAST and the cache already holds History depth

samples and a new sample is created by write(), unregister() or dispose(); or,

4. A Best Effort DataWriter has non-INFINITE max samples or max samples per instance Resource

Limits and the cache already holds the maximum samples and a new sample is created by

write(), unregister() or dispose().

Instances are added to the DataWriter Cache when:

 The publishing application registers an instance that is not already registered. Every sample

belongs to an instance, and the instance must be registered before a sample on that instance

samples can be created. The application can explicitly register an instance by calling

DataWriter::register_instance(), or CoreDX DDS will automatically register the instance when the

application attempts to create a sample without first registering its associated instance.

Instances are removed from the DataWriter Cache when:

 The publishing application unregisters an instance. This must be done explicitly by calling

DataWriter::unregister_instance().

DataReader Cache
Samples are added to the DataReader Cache when:

 A sample is received by the DataReader and the sample passes any filters configured on the

DataReader and there is room in the DataReader Cache for the new sample and new instance (if

the instance is not already in the DataReader Cache).

 If there is not room in the DataReader Cache for the sample, the new sample will be added only

if:

1. The instance that the sample belongs to already exists in the DataReader Cache or can

be added to the DataReader Cache; and,

2. the Reliability QoS policy is configured to Best Effort or the History QoS policy is

configured to KEEP_LAST (in both cases, an older sample will be removed to make room

for the new sample).

Samples are removed from the DataReader Cache when:

1. The subscribing application calls DataReader::take() (or one of take()’s variants); or,

2. Samples expire based on the source DataWriter Lifespan expiration duration; or,

17

17 CoreDX DDS Sample and Instance Management

3. A DataReader has a History QoS Policy of KEEP_LAST and the cache already holds History

depth samples and a new sample is received; or,

4. A Best Effort DataReader has non-INFINITE max samples or max samples per instance

Resource Limits and the cache already holds the maximum samples and a new sample is

received; or,

5. A DataReader has non-INFINITE autopurge nowriter samples delay, and an instance state is

determined to be NOT_ALIVE_NO_WRITERS; (associated samples will be removed after the

specified delay); or,

6. A DataReader has non-INFINITE autopurge disposed samples delay, and an instance state is

determined to be NOT_ALIVE_DISPOSED; (associated samples will be removed after the

specified delay).

Instances are added to the DataReader Cache when:

 A sample belonging to the instance is received by the DataReader and the instance does not

already exist in the DataReader Cache. The instance is created even if the associated sample is

not added to the DataReader Cache due to filters or max samples or max samples per instance

Resource Limits.

Instances are removed from the DataReader Cache when:

 The instance has a state of NOT_ALIVE_NO_WRITERS and there are no associated samples.

18

18 CoreDX DDS Sample and Instance Management

About Twin Oaks Computing

With corporate headquarters located in Castle Rock,

Colorado, USA, Twin Oaks Computing is a company

dedicated to developing and delivering quality

software solutions. We leverage our technical

experience and abilities to provide innovative and

useful services in the domain of data

communications. Founded in 2005, Twin Oaks

Computing, Inc delivered the first version of CoreDX

DDS in 2008. The next two years saw deliveries to

over 100 customers around the world. We continue

to provide world class support to these customers

while ever expanding.

Copyright © 2011 Twin Oaks Computing, Inc.. All

rights reserved. Twin Oaks Computing, the Twin Oaks

Computing and CoreDX DDS Logos, are trademarks

or registered trademarks of Twin Oaks Computing,

Inc. or its affiliates in the U.S. and other countries.

Other names may be trademarks of their respective

owners. Printed in the USA. 12/2011

Contact

Twin Oaks Computing, Inc.

(720) 733-7906

+33 (0)9 62 23 72 20

755 Maleta Lane

Suite 203

Castle Rock, CO. 80108

www.twinoakscomputing.com

