

Exploiting Multi-Core with
CoreDX Data Distribution Service

2009

Clark Tucker

Twin Oaks Computing, Inc

755 Maleta Ln, Suite 203
Castle Rock, CO 80108
720-733-7906
www.twinoakscomputing.com

10/19/2009

White Paper

2

Contents

Introduction 2

Multicore Challenges 3

Previous Options 3

CoreDX DDS™ Solution 5

Application Implementation 7

Summary 8

Introduction

It has been said that change is the only

constant. In the computing world, hunger

for more performance is a constant. The

increase in multicore processors that

squeeze more performance from less

power is a constant. And with these con-

stants come the need for applications that

can deliver more performance on these

advanced processor cores.

CoreDX DDS™ is designed to address

this need. CoreDX DDS™ utilizes multi-

core hardware. Architected from the

ground-up to exploit multicore resources,

the CoreDX DDS™ middleware provides a

clean interface to these parallel and dis-

tributed programming environments.

CoreDX DDS™ is a communications mid-

dleware. It is an implementation of the

Data Distribution Service: a Publish-

Subscribe data communications standard

managed by the OMG. The DDS standard

includes support for Type-Safe application

defined data types; dynamic discovery of

publishers, subscribers, and topics; and

rich Quality of Service policy configuration.

With an internal threading model that is

tuned to run on multiple cores and a flexi-

3

ble programming interface, CoreDX

DDS™ offers distinct advantages to

system architects. The CoreDX DDS™

API supports different data access

models: polling, synchronous event no-

tification, and asynchronous event noti-

fication. This flexibility, coupled with

robust Quality of Service policy con-

figuration, makes CoreDX DDS™

highly relevant to multicore applica-

tions.

This paper explores the application of

CoreDX DDS to multicore applications,

and presents some design patterns to

help exploit those additional cores.

Multicore Challenges

With the growing prevalence of multi-

core computer systems, software archi-

tects are presented with many opportu-

nities for performance improvements;

however, parallel-programming envi-

ronments raise significant complexity

challenges. Programming languages

and Operating Systems provide some

tools to help reduce the complexity of

parallel programming; but these funda-

mental tools are complex in them-

 selves. Developers are adopting middle-

ware, like CoreDX DDS™, because it of-

fers a valuable abstraction layer that insu-

lates them from the complexity of parallel

and distributed programming.

Previous Options

One approach is to maintain a single

threaded application. This application will

execute on a single core only, and will be

limited by the capabilities of that single

core. This approach is sufficient for some

applications; however, the power and per-

formance benefits of multicore hardware

cannot be realized with these architec-

tures. In the worst case, the extra cores

are idle; or, somewhat better, are applied

to operating system tasks.

The solution lies with parallel program-

ming. Parallel programming environments

have been available for years. There are

Figure 1 - Single Threaded Application with

no Middleware. Additional cores are under-

utilized.

4

many approaches: multi-threading,

multi-tasking, pipelining, and symmetric

processing. It is possible to integrate

these approaches into application soft-

ware, and many systems have been

developed with these techniques.

However, these systems are often built

around custom, proprietary implemen-

tations and are difficult to maintain or

extend. For example, it may be neces-

sary to modify the application code as

the number of available cores in-

creases.

Application software that supports par-

allel programming is inevitably complex

and fragile, and the increased complex-

ity is often an issue. This complexity

arises from the need to address critical

section protection, thread synchroniza-

tion, library thread-safety, synchronous

versus asynchronous event notification,

processor affinity, cache management,

and the debugging challenges pre-

sented by multi-threaded systems.

Does a multitasking approach help? In

this approach, the data communication

tasks are delegated to separate appli-

cations or tasks (processes). This may

help distribute work across more cores,

but the overhead and complexity of

synchronization between applications

is often greater and can induce signifi-

cant latency. Therefore, multitasking is

not an optimal approach.

Middleware components that are not

architected to support multicore pro-

gramming environments are of little

help. These middleware components

(see Figure 2) are restricted to a single

core, and do not assist the developer

with pipelining the data flow.

Again, it is left to the application devel-

oper to develop multi-threaded applica-

tion code if he wants to employ addi-

tional cores.

Does implementing a multi-threaded

application on top of a single-threaded

middleware layer help? Again, in many

Figure 2 - Single Threaded Application

with Single Threaded Middleware. Addi-

tional cores are underutilized.

5

cases, the answer is no. As shown in

Figure 3, the internal synchronization of

the single-threaded middleware layer

will serialize the process, again result-

ing in underutilized cores.

Even a multi-threaded application is

serialized to a single core if the middle-

ware technology is not designed to fa-

cilitate data pipelining. This is a situa-

tion that can be very frustrating to ap-

plication engineers.

CoreDX DDS™ Solution

The CoreDX DDS middleware simpli-

fies the task of putting those additional

cores to work. The engineers at Twin

Oaks Computing have worked with

multi-threaded and parallel program-

ming environments for over a decade.

Figure 3 - Multi-Threaded Application with

Single Threaded Middleware. Additional

cores are still underutilized.

This expertise has been incorporated

into the advanced data pipeline archi-

tecture in CoreDX DDS™.

By internally pipelining the flow of data,

CoreDX DDS™ can employ multiple

processing cores simultaneously. This

automatic distribution of work across

multiple cores is easy to exploit in ap-

plication code because of the flexibility

of the CoreDX DDS™ API. In particu-

lar, the following items are critical for

successful multicore optimization:

 non-blocking data publication,

 (a)synchronous event notification,

 arbitrary data access, and

 loose-coupling

With these tools, developers can write

application software with a single

thread of control, and the CoreDX

DDS™ middleware will distribute the

communications work across multiple

CoreDX DDS™ extends the

power of the Publish-

Subscribe paradigm with

Multicore support.

6

cores. This simplifies the application

code while employing sophisticated

parallel programming technologies.

Non-Blocking Data Publication

With non-blocking data publication, an

application can present data to the

CoreDX DDS™ middleware for publi-

cation, and then continue to perform

additional processing. The application

thread is not blocked while the middle-

ware performs the distribution of the

data. Further, this is an opportunity for

the middleware to pipeline the data dis-

tribution tasks.

This type of architecture is often critical

to data collection systems where the

data is subject to bursts. An applica-

tion is often required to handle data as

it is presented from a device, and if the

application is blocked while distributing

the data to remote consumers, subse-

quent data samples might be missed.

Synchronous and Asynchronous Event

Notification

Application software can be structured

to receive event notifications (for exam-

ple: data arrival) through multiple

mechanisms. This flexibility supports

both single and multiple threaded appli-

cation code. The application developer

is free to mix these models as neces-

sary to achieve the desired architecture

in the application code.

The combination of WaitSets and Con-

ditions provides a simple mechanism

to support single threaded access to

middleware events. An application

simply blocks on a WaitSet until the

requested events have been detected.

Support for Listener callbacks allows

the application developer to expand the

threading model of the application and

embodies an Event Driven Architecture

(EDA). This architecture model is very

flexible, and promotes Open Architec-

ture principles.

With CoreDX DDS™, even

Single-Threaded Applica-

tions can utilize multiple

cores.

The unique data pipeline in CoreDX

DDS™ makes it easy to leverage

modern hardware.

7

Arbitrary Data Access

With CoreDX DDS™, applications are

not required to access data samples in

the order that they arrive. The applica-

tion can choose to access data in a

natural manner. There are numerous

access patterns available to the devel-

oper, for example: ordered by time,

grouped by key, only new data sam-

ples, and only old data samples. Fur-

ther, the developer can request that the

middleware maintain historical data,

relieving the application code from this

task.

Multi-Threaded Core

Finally, to complement all of these as-

pects, CoreDX DDS™ features a multi-

threaded core. As shown in Figure 4,

the CoreDX DDS™ middleware em-

ploys an advanced threading architec-

ture to support data pipelining and

event notification.

This technology directly addresses the

need of system architects to fully har-

ness multicore processing power. The

result is full utilization of available

cores, reduced data latency, and sim-

plified application architecture.

Application Implementation

The application engineer, with the help

of CoreDX DDS™, can easily exploit

multicore processors to full advantage.

Because of the flexible API and ad-

vanced multi-threaded architecture of

the CoreDX DDS™ middleware, appli-

cations can be single or multi-threaded

and still utilize multiple cores.

The application can use synchronous

or asynchronous event notification, or

can poll for events as necessary. The

flexible data read calls and the non-

blocking write calls provide for flexible

data handling patterns.

Figure 4 - Multi-Threaded Application with

CoreDX DDS Multi-Threaded Middleware.

All cores are utilized.

8

core environment, and identified how

applications can easily realize these

benefits.

As the demand for performance contin-

ues to grow, engineers can rely on

CoreDX DDS™ to fully harness multi-

core processing power. With an easy

and flexible programming model,

CoreDX DDS™ makes these advanced

processor resources accessible while

simplifying application software imple-

mentation. More power with less work

- CoreDX DDS™ is a real winner.

Finally, the dynamic discovery aspects

of the DDS protocol promote Open Ar-

chitecture goals. The application can

be deployed in a dynamic environment,

where data consumers and producers

appear and disappear over time. The

flow of data in these dynamic distrib-

uted systems is not predetermined, and

can change on the fly. With robust

Quality of Service policies, the applica-

tion engineer has control over the criti-

cal aspects of communication, and can

guarantee successful data exchange,

even in these challenging dynamic en-

vironments.

All of these features of CoreDX DDS™

mean that the application engineer has

choices in the design of the application

architecture. An engineer with choices

is a happy engineer.

Summary

In this paper we reviewed the opportu-

nities presented by multicore hardware.

We reviewed sub-optimal middleware

architectures, and then presented the

multicore capable CoreDX DDS™ mid-

dleware. This discussion highlighted

the benefits of CoreDX DDS in a multi-

9

About Twin Oaks Computing

With corporate headquarters located in Castle

Rock, Colorado, USA, Twin Oaks Computing is a

company dedicated to developing and delivering

quality software solutions. We leverage our techni-

cal experience and abilities to provide innovative

and useful services in the domain of data commu-

nications. Founded in 2005, Twin Oaks Comput-

ing, Inc delivered the first version of CoreDX DDS

in 2008. The next two years saw deliveries to over

100 customers around the world. We continue to

provide world class support to these customers

while ever expanding.

Contact

Twin Oaks Computing, Inc.

(720) 733-7906

+33 (0)9 62 23 72 20

755 Maleta Lane

Suite 203

Castle Rock, CO. 80108

www.twinoakscomputing.com

Copyright © 2011 Twin Oaks Computing, Inc.. All

rights reserved. Twin Oaks Computing, the Twin Oaks

Computing and CoreDX DDS Logo, are trademarks or

registered trademarks of Twin Oaks Computing, Inc.

or its affiliates in the U.S. and other countries. Other

